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Basic Notation

De�nition: A code

Cn : An ! f0; 1g�

is a mapping from the set An of all sequences of length n

over the alphabet A to the set f0; 1g� of binary sequences.

Given a probabilistic source model and a code Cn we let:

� P (xn1) be the probability of the message xn1 = x1 : : : xn,

� L(Cn; x
n
1) be the code length for xn1 ,

� Entropy Hn(P ) = �Pxn1
P (xn1) lgP (x

n
1),

The basic problem of source coding (part of information

theory known also as data compression) is to �nd codes

with shortest descriptions (lengths) either on average or for

individual sequences when the source (i.e., statistics of the

underlying probability distribution) is unknown.

Information-theoretic quantities are expressed in binary

logarithms written lg := log2.
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Kraft's Inequality

Pre�x code or instantaneous code is such that no codeword

is a pre�x of another codeword.

Lemma 1. [Kraft's Inequality] For any pre�x code (over

a binary alphabet), the codeword lengths `1; `2; : : : ; `m
satisfy the inequality

mX
i=1

2
�`i � 1:

Conversely, if codeword lengths satisfy this inequality, then

one can build a pre�x code.

Proof. An easy exercise on trees. Let `max be the maximum

codeword length. Since the number of descendants at level

`max of a codeword located at level `i is 2
`max�`i, we obtain

mX
i=1

2`max�`i � 2`max:
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Shannon's Lower Bound

Lemma 2. [Shannon] For any pre�x code, the average

code length E[L(Cn; X
n
1 )] cannot be smaller than the

entropy of the source Hn(P ), that is,

E[L(Cn; X
n
1 )] � Hn(P ):

Sketch of Proof: Let K =
P

xn1
2�L(x

n
1 ) � 1, and

L(Cn; x
n
1) := L(Cn). Then

E[L(Cn; X
n
1 )] � Hn(P ) =

=
X

xn12A
n

P (x
n
1)L(x

n
1 ) +

X
xn12A

n

P (x
n
1) log P (x

n
1)

=
X

xn12A
n

P (xn1) log
P (xn1)

2�L(x
n
1 )=K

� logK

� 0

since the �rst term is a divergence and cannot be negative

(or log x � x�1 for 0 < x � 1) while K � 1 by Kraft's

inequality.
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Barron's Lemma

Observation: For every pre�x code, there exists at least

one source sequence ~xn1 such that

L(~x
n
1) � � log2 P (~x

n
1):

Indeed, if this is not true, then the Kraft inequality cannot

hold.

Lemma 3. [Barron] Let L(Xn
1 ) be the length of a �xed-

to-variable codeword satisfying the Kraft inequality, where

Xn
1 is generated by a stationary ergodic source. For any

sequence an of positive constants satisfying
P

n 2
�an <1

the following holds

PrfL(Xn
1 ) < � logP (X

n
1 )� ang � 2

�an;

and therefore

L(Xn
1 ) � � log P (Xn

1 )� an (a:s):
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Proof of Barron's Lemma

We argue as follows:

PrfL(Xn
1 ) < � log2 P (X

n
1 )� ang

=
X

xn1 :P (xn1 )<2
�L(xn1 )�an

P (x
n
1)

�
X

xn1 :P (xn1 )<2
�L(xn1 )�an

2
�L(xn1 )�an

� 2�an
X
xn1

2�L(x
n
1 )

� 2
�an:

The lemma follows from the Kraft inequality and the

Borel-Cantelli Lemma.
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De�nitions of Redundancy

The pointwise redundancy Rn(Cn; P ; x
n
1) and the

average redundancy �Rn(Cn; P ) are de�ned as

Rn(Cn; P ; x
n
1) = L(Cn; x

n
1) + lg P (x

n
1)

�Rn(Cn) = EXn
1
[Rn(Cn; P ;X

n
1 )]

= E[L(Cn; X
n
1 )]�Hn(P ) � 0

where E denotes the expectation. The maximal redundancy

is de�ned as

R
�
(Cn; P ) = max

xn1

fRn(Cn; P ; x
n
1)g(� 0):

The pointwise redundancy can be negative, maximal and

average redundancy cannot (see next slide).

The redundancy-rate problem for a class S of source

models consists in determining the rate of growth of the

following minimax quantities

�Rn(S) = min
Cn

sup
P2S

E[L(Cn; x
n
1) + lgP (x

n
1)]

R
�
n(S) = min

Cn
sup
P2S

max
xn1

[L(Cn; x
n
1) + lgP (x

n
1)]

as n!1.
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Minimax Regret Functions

We should also point out that there are other measures of

optimality for coding, gambling and prediction. We refer

here to minimax regret functions de�ned as follows

�rn = min
Cn2C

sup
P2S

X
xn1

P (x
n
1)[Li + lg sup

P
P (x

n
1)];

r
�
n = min

Cn2C
max
xn1

[Li + lg sup
P
P (x

n
1)] (= R

�
n)

Also, we sometimes the maximin regret is of interest

rn = sup
P2S

min
Cn2C

X
xn1

P (x
n
1)[Li + lg sup

P
P (x

n
1 )]:

We call �rn the average minimax regret, r�n the maximal

minimax regret, and rn the average maximin regret.

One can look at the regret function as objective function

for the following game theoretical problem: choose L to

achieve for every xn1 a value as good as the best for all

players with hindsight, that is, � log supP (xn1) (i.e., the

minimum code length over the whole set S of probability

distributions).
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Redundancy for Known Sources

We start with the simplest problem, that is, we assume that

the source is known (i.e., S = fPg and the probability

measure is given). Surprisingly enough, there still remains

some open problems in this setting.

Mostly, information theory was concerned with �nding an

optimal code that minimizes the average redundancy, that

is, a code solving the following problem

�Rn(P ) = min
Cn2C

Exn1
[L(Cn; x

n
1) + log2 P (x

n
1)]:

We recall that the well known Hu�man code is the solution

to this problem.

But there are other optimization criteria that are of interest.

For example, what code minimizes the maximal redundancy?

More precisely, we seek a pre�x code Cn such that

R�
n(P ) = min

Cn
max
xn1

[L(Cn; x
n
1) + lg P (xn1)]:

We shall discuss it in the sequel.
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Average Redundancy for Shannon Code

In order to give a glimpse into our approach used to derive

the redundancy of Hu�man code, we �rst illustrate it on

a simpler code. Let us start with the Shannon code that

assigns the length

L(C
S
n ; x

n
1) = d� lgP (x

n
1)e

to the source sequence xn1 generated by a binary memoryless

source such that

P (xn1) = pk(1� p)n�k

where p is known probability of generating 0 and k is the

number of 0s. The Shannon code redundancy is

�RS
n =

nX
k=0

�n
k

�
pk(1� p)n�k

�
d� log2(p

k(1� p)n�k)e

+ log2(p
k(1� p)n�k)

�
= 1�

nX
k=0

�n
k

�
p
k
(1� p)

n�kh�k + �ni

where hxi = x� bxc is the fractional part of x, and

� = log2

�
1� p

p

�
; � = log2

�
1

1� p

�
:
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Figure 1: Shannon code redundancy versus block size n

for: (a) irrational � = log2(1 � p)=p with p = 1=�; (b)

rational � = log2(1� p)=p with p = 1=9.
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Sketch of Proof

The problem of evaluating the average redundancy of

Shannon and Hu�man codes can be reduced to an asymptotic

estimate of the following sum (as n!1)

nX
k=0

�n
k

�
p
k
(1� p)

n�k
f(hxk + yi)

for �xed p and some Riemann integrable function f :

[0; 1]! R (uniformly over y 2 R).

It turns out that asymptotics of the above sum depends

on the behavior of the sequence hxk + yi � [0; 1). For

example, for xk = �k, two cases must be considered:

� � irrational;

� � rational
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Uniformly Distributed Sequences Mod 1

De�nition 1. [B-u.d. mod 1] A sequence xn 2 R is said

to be Bernoulli uniformly distributed modulo 1 (in short:

B-u.d. mod 1) if for 0 < p < 1

lim
n!1

nX
k=0

�n
k

�
p
k
(1� p)

n�k
�I(hxki) = �(I)

holds for every interval I � R, where �I(xn) is the

characteristic function of I (i.e., it equals to 1 if xn 2 I

and 0 otherwise) and �(I) is the Lebesgue measure of I.

Theorem 1. Let 0 < p < 1 be a �xed real number and

suppose that the sequence xn is B-uniformly distributed

modulo 1. Then for every Riemann integrable function

f : [0; 1]! R we have

lim
n!1

nX
k=0

�n
k

�
p
k
(1� p)

n�k
f(hxk + yi) =

Z 1

0

f(t) dt;

where the convergence is uniform for all shifts y 2 R.

Proof. Standard; cf. Drmota and Tichy (1997) or Kuipers

and Niederreiter (1974) (cf. also Szpankowski (2000)).
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Weyl's Criterion

Theorem 2. [Weyl's Criterion] A sequence xn is B-u.d.

mod 1 if and only if

lim
n!1

nX
k=0

�n
k

�
pk(1� p)n�ke2�imxk = 0

holds for all non-zero m 2 Z� f0g.

Proof. The proof again is standard. Basically, it is based on

the fact that by Weierstrass's approximation theorem every

Riemann integrable function f of period 1 can be uniformly

approximated by a trigonometric polynomial (i.e., a �nite

combination of functions of the type e2�imx).
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Shannon Code: The Irrational Case

Let us return to the Shannon code redundancy. As

mentioned before we must consider two cases: � irrational

and � rational. We �rst consider � irrational.

To apply our previous results, we must show that h�ki is
B-u.d. mod 1. By Weyl's criterion

lim
n!1

nX
k=0

�n
k

�
pkqn�ke2�im(k�) = lim

n!0

�
pe2�im� + q

�n
= 0

provided � is irrational. Hence, by the previous theorem,

with f(t) = t and y = �n, we immediately obtain

lim
n!1

nX
k=0

�n
k

�
pkqn�kh�k + �ni =

Z 1

0

tdt =
1

2
:

This proves that for � irrational

RS
n =

1

2
+ o(1):

EPFL{Lausanne 15



Shannon Code: The Rational Case

Let now � be rational. The following simple result is easy

to prove.

Lemma 4. Let 0 < p < 1 be a �xed real number

and suppose that � = N
M is a rational number with

gcd(N;M) = 1. Then, for every bounded function

f : [0; 1]! R we have

nX
k=0

�n
k

�
pk(1�p)n�kf(hk�+yi) = 1

M

M�1X
l=0

f

�
l

M
+
hMyi
M

�
+O(�n

uniformly for all y 2 R and some � < 1.

Now, having the above two results we easily establish that

�RS
n =

8<
:

1
2 + o(1) � irrational

1
2 � 1

M

�hMn�i � 1
2

�
+O(�n) � = N

M
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Average Redundancy of the Hu�man Code

Now we can return to the Hu�man code. It can be proved

that the average redundancy of the Hu�man code is

�RH
n = 1 + �RS

n � 2

nX
k=0

�n
k

�
pkqn�k2�h�k+�ni +O(�n)

where � < 1 and �RS
n is the average redundancy of the

Shannon code.

Theorem 3. [Szpankowski, 2000] Consider the Hu�man

block code of length n over a binary memoryless source

Binomial(n,p) and set

� = log2

�
1� p

p

�
; � = log2

�
1

1� p

�
:

Then for p < 1
2 as n!1

�R
H
n =

8><
>:

3
2 � 1

ln 2 + o(1) � 0:057304

3
2 � 1

M

�h�Mni � 1
2

�� 1

M(1�2�1=M )
2�hn�Mi=M +O(�n)

where N;M are integers such that gcd(N;M) = 1 and

� < 1.

EPFL{Lausanne 17



706050403020100

0.08

0.07

0.06

0.05

0.04

0.03
706050403020100

0.08

0.06

0.04

0.02

(a) (b)

Figure 2: The average redundancy of Hu�man codes versus

block size n for: (a) irrational � = log2(1 � p)=p with

p = 1=�; (b) rational � = log2(1� p)=p with p = 1=9.
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Generalized Shannon Code

We now turn our attention to the maximal redundancy, that

is, we seek a pre�x code Cn such that

R
�
n(P ) = min

Cn
max
xn1

[L(Cn; x
n
1) + lg P (x

n
1)]:

Let us de�ne a generalized Shannon code CGS
n as

L(CGS
n ; xn1) =

� blg 1=P (xn1 )c if xn1 2 L
dlg 1=P (xn1 )e if xn1 2 An n L

where L � An, and the Kraft inequality holds. it is easy to

see that a generalized Shannon code is the optimal code for

the above problem.
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Main Results

Theorem 4. [Drmota and Szpankowski, 2001] Let p1; p2; : : : ; pjAjn

be the probabilities P (xn1), x
n
1 2 An such that

0 � h� lg p1i � h� lg p2i � � � � � h� lg pjAjni � 1;

and let j0 be the maximal j such that

j�1X
i=1

pi2
h� lg pii +

1

2

jAjnX
i=j

pi2
h� lg pii � 1;

where hxi = x� bxc is the fractional part of x. Then

R�
n(P ) = 1� h� lg pj0i;

that is, the Generalized Shannon code with L =

f1; : : : ; j0g is optimal for the maximal redundancy problem.
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Maximal Redundancy of the Generalized

Shannon Code

Consider the Generalized Shannon code constructed for a

source sequence xn1 generated by a memoryless binary source

such that

P (xn1) = pk(1� p)n�k

where p is known probability of generating 0s and k is the

number of 0s.

Theorem 5. [Drmota and Szpankowski, 2001] Suppose

that � = lg 1�p
p is irrational. Then, as n!1,

R
�
n(Pp) = �log log 2

log 2
+ o(1) = 0:5287 : : :+ o(1):

If lg 1�p
p = N

M is rational and non-zero then, as n!1,

R�
n(Pp) = �bM lg(M(21=M � 1))� hMn lg 1=(1 � p)ic+ hMn lg

M

Finally, if lg 1�p
p = 0 then p = 1

2 and R�
n(P1=2) = 0.
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Minimax Redundancy for a Class of Sources

We now assume that a source sequence xn1 is generated by a

source from a set of sources S (i.e., a class of distributions

P 2 S). Every source may have a di�erent distribution

P (within the class) and we must design the best code

(minCn, shortest length) for the worst source (supP2S),

i.e., minCn supP2S[L(cn; x
n
1) + lgP (xn1n].

We consider the following classes of sources:

� Memoryless sources M0 over an m-ary (�nite)

alphabet, that is,

P (xn1) = p
k1
1 � � � pkmm

with k1 + � � �+ km = n, where pi are unknown!

� Markov sourcesMr over a �nite alphabet of order r.

� Renewal Sources where an 1 is introduced after a run

of 0s distributed according to some distribution.

� Mixing Sources where the probability distribution is

mixing (i.e., (1 �  (g))P (A)P (B) � P (AB) �
(1 +  (g))P (A)P (B) where A 2 F0

�1 and B 2
F1
g ).

EPFL{Lausanne 22



Maximal Minimax Redundancy

Shtarkov in 1978 proved that the minimax redundancy

lg

0
B@X

xn1

sup
P2S

P (x
n
1)

1
CA � R

�
n(S) � lg

0
B@X

xn1

sup
P2S

P (x
n
1)

1
CA+1:

We can prove a precise result for the maximal minimax

redundancy, as shown below.

Lemma 5. Let S be a system of probability distributions

P on An and set

Q�(xn1) :=
supP2S P (x

n
1)P

yn12A
n supP2S P (y

n
1 )
:

Then

R
�
n(S) = R

GS
n (Q

�
) + lg

0
B@ X

xn12A
n

sup
P2S

P (x
n
1)

1
CA ;

where RGS
n (Q�) = 1 � h� lg qj0i is the maximal

redundancy of a Generalized Shannon code built for the

(known) distribution Q�.
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Sketch of Proof

By de�nition we have

R
�
n(S) = min

Cn2C
sup
P2S

max
xn1

(L(Cn; x
n
1) + lgP (x

n
1))

= min
Cn2C

max
xn1

�
L(Cn; x

n
1) + sup

P2S
lgP (xn1)

�
= min

Cn2C
max
xn1

[L(Cn; x
n
1) + lgQ

�
(x

n
1)

+ lg
X

yn12A
n

sup
P2S

P (y
n
1 )]

= R
�
n(Q

�
) + lg

0
B@ X

yn12A
n

sup
P2S

P (y
n
1 )

1
CA :

Thus, the precise maximal redundancy is established.
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Decomposition

The maximal minimax redundancy R�
n(S) can be

decomposed into

R
�
n(S) = Dn(S) +R

GS
n (Q

�
n)

where

Dn(S) = lg

0
B@ X

xn12A
n

sup
P2S

P (xn1)

1
CA := lg dn(S);

R
GS
n (Q

�
n) = 1� h� lg qj0i:

Moreover, Dn+1(S) � Dn(S) is a nondecreasing

function of n that depends only on the \richness" of

S, while RGS
n (Q�

n) = O(1) is potentially 
uctuating but

bounded part that depends on the optimal code.
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Class of Memoryless Sources

We �rst consider a class of memoryless sources over a

�nite m-ary alphabet, and derive precise asymptotics using

a combination of combinatorial and analytic tools (e.g.,

generating functions and singularity analysis)

We �rst deal only with the term dn(M0) of the maximal

minimax redundancy R�
n(M0). It easy to see that

dn(M0) =
X

k1+���+km=n

� n

k1; : : : ; km

��k1
n

�k1

� � �
�
km

n

�km

:

since

sup
p1;:::;pm

p
k1
1 � � � pkmm =

�
k1

n

�k1

� � �
�
km

n

�km

:

where

k1 + � � �+ km = n:
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Generating Function for dn(M0)

We write

dn(M0) =
n!

nn

X
k1+���+km=n

k
k1
1

k1!
� � � k

km
m

km!

Let us introduce a tree-generating function

B(z) =

1X
k=0

kk

k!
z
k
=

1

1� T (z)
;

where T (z) satis�es T (z) = zeT (z) (= �W (�z),
Lambert's W -function) and also

T (z) =

1X
k=1

kk�1

k!
zk

enumerates all rooted labeled trees. Let now

Dm(z) =

1X
n=0

nn

n!
dn(M0):

Then

Dm(z) = (B(z)� 1)m�1B(z):
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Asymptotics

The function B(z) has an algebraic singularity at z = e�1

(it becomes a multi-valued function) and one �nds

B(z) =
1p

2(1� ez)
+

1

3
+O(

q
(1� ez):

The singularity analysis yields (cf. Clarke & Barron, 1990,

Szpankowski, 1998)

dn(M0) =
m� 1

2
log

�
n

2

�
+ log

 p
�

�(m2 )

!
+

�(m2 )m

3�(m2 � 1
2)
�
p
2p
n

+

 
3 +m(m � 2)(2m + 1)

36
� �2(m2 )m

2

9�2(m2 � 1
2)

!
� 1
n
+ � �

To derive asymptotics of R�
n(M0) we need �RGS

n (Q�) that

we just proved to be (cf. Drmota & Szpankowski, 2001)

RGS
n (Q�) = �ln 1

m�1 lnm

lnm
+ o(1);

In general, the term o(1) can not be improved. Thus

R
�
nM0) =

m� 1

2
log

�
n

2

�
�
ln 1

m�1 lnm

lnm
+log

 p
�

�(m2 )

!
+o(1):
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Markov Sources

Let M1 be a class of Markov sources of order 1 over an

m-ary alphabet. Let P = fpijgmi;j=1 be the transition

probability. To simplify we assume that the initial state of

the Markov process is �xed. Then

P (x
n
1 ) = p

k11
11 � � � pkmm

kmm

where kij is the number of pair symbols ij, that is, i

followed by j in xn1 . Observe that kij are not completely

independent. (Some results see Rissanen 1996, and Atteson

1999.)

We only consider circular strings (i.e., after the n symbol

we re-visit the �rst symbol of xn1 ). Then kij satisfyX
1�i;j�m

kij = n;

mX
j=1

kij =
mX
j=1

kji; 8 i (conservation 
ow property)

We denote these constraints as Kn.
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A Combinatorial Problem

Research Problem. Let Km = fkijgmi;j=1 be a given

matrix satisfying the above constraint Kn. How many

strings xn1 can be generated over A having kij pairs (i; j)

such that j follows i in xn1? We denote this number as

NKm.

(For example, for a memoryless source we have

NKm =
� n
k1;:::;km

�
strings xn1 with ki symbols i 2 A where k1 + � � �+ km =

n.)

Example: Let A = f0; 1g and

K2 =

�
1 2

2 2

�

0 1

Figure 3: The directed multigraph for a binary alphabet

A = f0; 1g with the matrix K2 as above. NK2 is equal

the number of string x71 with matrix K2 and it is also equal

to the number of Eulerian cycles in such graph.
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Preliminary Results

It is not diÆcult to see that the non-
uctuating part

dn(M1) of the maximal minimax redundancy for Markov

sources over m-ary alphabet is

dn(M1) =
X

kij2Kn

NKm

�
k11

k1

�k11

: : :

�
km;m

km

�km;m

;

where Kn is was de�ned previously and

ki =

mX
j=1

kij:

Using combinatorial calculus and the saddle moment method

we expect to prove the following asymptotic result:

dn(M1) �
�
n

2�

�(m2�m)=2

Am

where Am is a constant that we can express explicitly as a

multidimensional integral, that is,

Am =

Z
K(1)

Fm(yij)
Y
i

qP
j yijQ

j

p
yij
d[yij]

where K(1) = fyij :
P

ij yij = 1g.
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Renewal Sources

Csisz�ar and Shields studied redundancy of the renewal

process de�ned as follows:

� Let T1; T2 : : : be a sequence of i.i.d. positive-valued

random variables with distribution Q(j) = PrfTi = jg
over nonnegative integers j � 0.

� The process T0; T0 + T1; T0 + T1 + T2; : : : is called

the renewal process which is stationary if T0 is chosen

properly.

� With a renewal process we associate a binary renewal

sequence in which the positions of the 1's are at the

renewal epochs T0; T0 + T1; T0 + T1 + T2; : : :.

� We start with x0 = 1.

Observe that the renewal process is not a Markovian

process, and as a matter of fact may not be a mixing

process.

We shall analyze the maximal minimax redundancy

Rn(R0) over the renewal process R0. Csisz�ar and Shields

proved that Rn(R0) = �(
p
n). We will provide a more

precise estimate.

EPFL{Lausanne 32



Some Preliminary Estimates

For a sequence

x
n
0 = 10

�110
�21 � � � 10�n1 0 � � � 0| {z }

k�

where 0 � �i � n for i = 1; : : : ; n, let km be the number

of i such that �i = m, wherem = 0; 1; : : : ; n�1. Then

P (x
n
1) = Q

k0(0)Q
k1(1) � � �Qkn�1(n�1)PrfT1 > k

�g:

It can be proved that

rn+1 � 1 � dn(R0) �
nX

m=0

rm

where

rn =

nX
k=0

rn;k

rn;k =
X
P(n;k)

� k

k0 � � � kn�1

��k0
k

�k0
�
k1

k

�k1

� � �
�
kn�1

k

�kn�1

where P(n; k) denotes the partition of n into k terms, i.e.,

n = k0 + 2k1 + � � �+ nkn�1;

k = k0 + � � �+ kn�1:
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Main Results

Theorem 6. [Flajolet and Szpankowski 1998] Consider the

class of renewal processes as de�ned above. The quantity

rn attains the following asymptotics

rn =
2

log 2

p
cn� 5

8
lg n+

1

2
lg log n+O(1)

where c = �2

6 � 1 � 0:645. Moreover,

R�
n(R0) =

2

log 2

p
cn+O(log n):

It can also be observed that the quantity rn has an intrinsic

meaning by its own. Let Wn denote the set of all nn

sequences of length n over the alphabet f0; : : : ; n � 1g.
For a sequence w, take kj to be the number of letters j in

w. Then each sequence w carries a \maximum likelihood

probability"

�ML(w) =

�
k0

k

�k0

� � �
�
kn�1

k

�kn�1

:

This is the probability that w gets assigned in the Bernoulli

model that makes it most likely. The quantity rn is also

rn =
P

w2Wn
�ML(w).
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Asymptotics: Overview

As in the Markov case, we observe that the diÆculty

in extracting asymptotics of dn lies in a complicated

combinatorial structure of the summation index P(n; k).

Again, combinatorics works hand-in-hand with analytic tools

to solve this problem of information theory.

To give a glimpse into the analysis required for this

problem, let us mention that we:

� �rst, we transform rn into another quantity sn that

we know how to handle and (using a probabilistic

technique) we know how to read back results for rn
from sn;

� use combinatorial calculus to �nd the generating

function of sn, which turns out to be an in�nite product

of tree-functions B(z) de�ned above;

� transform this product into a harmonic sum that can

be analyzed asymptotically by the Mellin transform;

� obtain an asymptotic expansion of the generating

function around z = 1 which is the starting point for

extracting the asymptotics of the coeÆcients;

� �nally, estimate R�
n(R0) by the saddle point method.
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Asymptotics: Some Details

A diÆculty of �nding asymptotics of rn stems from the factor

k!=kk present in the de�nition of rn;k. We circumvent this

problem by analyzing a related pair of sequences, namely sn
and sn;k that are de�ned as(

sn =
Pn

k=0 sn;k

sn;k = e�k
P

P(n;k)
kk0
k0!
� � � kkn�1

kn�1!
:

The translation from sn to rn is most conveniently expressed

in probabilistic terms. Introduce the random variable Kn

whose probability distribution is sn;k=sn, that is,

$n : PrfKn = kg =
sn;k

sn
;

where $n denotes the distribution. Then Stirling's formula

yields

rn

sn
=

nX
k=0

rn;k

sn;k

sn;k

sn
= E[(Kn)!K

�Kn
n e�Kn]

= E[
p
2�Kn] +O(E[K

�1
2

n ]):

Thus, the problem of �nding rn reduces to asymptotic

evaluations of sn, E[
p
Kn] and E[K

�1
2

n ].
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Fundamental Lemmas

Lemma 6. Let �n = E[Kn] and �
2
n = Var(Kn), where

Kn has the distribution $n de�ned above. The following

holds

sn � exp

�
2
p
cn� 7

8
log n+ d+ o(1)

�
�n =

1

4

r
n

c
log

n

c
+ o(

p
n)

�
2
n = O(n log n) = o(�

2
n);

where c = �2=6 � 1, d = � log 2� 3
8 log c� 3

4 log �.

Lemma 7. For large n

E[
p
Kn] = �

1=2
n (1 + o(1))

E[K
�1
2

n ] = o(1):

where �n = E[Kn].

Thus

rn = snE[
p
2�Kn](1 + o(1))

= sn
p

2��n(1 + o(1)):

EPFL{Lausanne 37



Generating Functions

1. De�ne the function �(z) as

�(z) =
1X
k=0

kk

k!
e
�k
z
k
:

One has (e.g., by Lagrange inversion again or otherwise)

�(z) =
1

1� T (ze�1)
:

2. De�ne

Sn(u) =

1X
k=0

sn;ku
k; S(z; u) =

1X
n=0

Sn(u)z
n:

Since sn;k involves convolutions of sequences of the form

kk=k!, we have

S(z; u) =
X
Pn;k

z1k0+2k1+���

�
u

e

�k0+���+kn�1 kk0

k0!
� � � k

kn�1

kn�1!

=

1Y
i=1

�(z
i
u):

We need to compute sn = [zn]S(z; 1) where [zn]F (z)

denotes the coeÆcient at zn of F (z).
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Mellin Asymptotics

3. Let L(z) = log S(z; 1) and z = e�t, so that

L(e
�t
) =

1X
k=1

log �(e
�kt

):

Mellin transform techniques provide an expansion of L(e�t)

around t = 0 (or equivalently z = 1) since the sum falls

under the harmonic sum paradigm.

4. The Mellin transform L�(s) = M(L(e�t); s) of

L(e�t) is computed by the harmonic sum property (M3).

For <(s) 2 (1;1), the transform evaluates to

L
�
(s) = �(s)�(s)

where �(s) =
P

n�1 n
�s is the Riemann zeta function,

and

�(s) =

Z 1

0

log �(e�t)ts�1dt:

This leads to

L�(s) �
�
�(1)

s� 1

�
s=1

+

�
� 1

4s2
� log �

4s

�
s=0

:
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What's Next?

5. An application of the converse mapping property (M4)

allows us to come back to the original function,

L(e�t) =
�(1)

t
+

1

4
log t� 1

4
log � +O(

p
t);

which translates in

L(z) =
�(1)

1� z
+
1

4
log(1�z)�1

4
log ��1

2
�(1)+O(

p
1� z):

where

c = �(1) = �
Z 1

0

log(1� T (x=e))
dx

x

=
�2

6
� 1:

6. In summary, we just proved that, as z ! 1�,

S(z; 1) = e
L(z)

= a(1�z)14 exp
�

c

1� z

�
(1 + o(1)) ;

where a = exp(�1
4 log � � 1

2c).

To extract asymptotic we need to apply the saddle point

method.
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Average vs Maximal Minimax Redundancy

From known results we observed that �Rn(S) � R�
n(S).

Therefore, we conjecture the following.

Conjecture. Under certain additional conditions

�Rn = R
�
n + o(log dn(S) � lg

0
B@ X

xn12A
n

sup
P2S

P (x
n
1)

1
CA :

We are able to prove that (Drmota & Szpankowski, 2002)

�Rn(S) � log2 dn � inf
P2S

X
xn1

P (xn1) lg

�
supP P (x

n
1)

P (xn1 )

�
+O(1);

�Rn(S) � log2 dn � sup
P2S

X
xn1

P (x
n
1 ) lg

�
supP P (x

n
1)

P (xn1)

�
+O(1):

For example, it is known that for memoryless and Markov

processes (in general, d-parameterized distributions)

X
xn1

P (x
n
1) lg

�
supP P (x

n
1)

P (xn1)

�
=
d

2
+ o(1):
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Conclusions

� Many open problems in analytic information theory:

1. Generalize Hu�man redundancy to Markov sources.

2. What code minimizes the r-th redundancy Rr
n

de�ned for 1 < r <1 as

R[r]
n =

0
B@X

xn1

P (xn1) [L(Cn; x
n
1) + logP (xn1)]

r

1
CA

1=r

:

3. Compute redundancy rate(s) for mixing sources.

4. Prove or disprove that for renewal source �Rn(R0) �
R�
n(R0) � 2

log 2

r�
�2

6 � 1
�
n.

� Probabilistic, analytic and combinatorial methods must

work hand in hand to produce precise results of analytic

information theory.

� While information theory proved to be quintessential to

communications, in our opinion a non-trivial application

of information theory to biology and information security

still awaits us. The same applies to discrete mathematics.

The methods discussed are explained in my recent book:

Average Case Analysis of Algorithms on Sequences, Wiley,

New York, 2001.
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Appendix A: Analytic Information Theory

The redundancy rate problem is typical of a situation where

second-order asymptotics play a crucial role since the

leading term of L(Cn) is known to be nH, where H is

the entropy rate. This problem is an ideal candidate for

analytic information theory that applies analytic tools to

information theory.

As argued by Andrew Odlyzko: \Analytic methods are

extremely powerful and when they apply, they often yield

estimates of unparalleled precision."

In 1997 Shannon Lecture, Jacob Ziv presented compelling

arguments for \backing o�" to a certain degree from the

(�rst-order) asymptotic analysis of information systems in

order to predict the behavior of real systems where we

always face �nite (and often small) lengths (of sequences,

�les, codes, etc.) One way of overcoming these diÆculties

is to increase the accuracy of asymptotic analysis and

replace �rst-order analyses by more complete asymptotic

expansions, thereby extending their range of applicability to

smaller values while providing more accurate analyses (like

constructive error bounds, large deviations, local or central

limit laws).
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Appendix B: Mellin Properties

(M1) Direct and Inverse Mellin Transforms. Let

c belong to the fundamental strip de�ned below.

f
�
(s) :=M(f(x); s) =

Z 1

0

f(x)x
s�1
dx

then

f(x) =
1

2�i

Z c+i1

c�i1

f�(s)x�sds:

(M2) Fundamental Strip. The Mellin transform of

f(x) exists in the fundamental strip <(s) 2 (��;��),
where

f(x) = O(x�) (x! 0); f(x) = O(x�) (x!1):

(M3) Harmonic Sum Property. By linearity and the

scale rule M(f(ax); s) = a�sM(f(x); s),

f(x) =
X
k�0

�kg(�kx)

then

f
�
(s) = g

�
(s)
X
k�0

�k�
�s
k :
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(M4) Mapping Properties (Asymptotic expansion of

f(x) and singularities of f�(s)).

f(x) =
X

(�;k)2A

c�;kx
�
(log x)

k
+O(x

M
)

then

f�(s) �
X

(�;k)2A

c�;k
(�1)kk!

(s+ �)k+1
:

(i) Direct Mapping. Assume that f(x) admits as x! 0+

the asymptotic expansion of the above for some�M < ��
and k > 0. Then for <(s) 2 (�M;��), the transform

f�(s) satis�es the singular expansion of above.

(ii) Converse Mapping. Assume that f�(s) = O(jsj�r)
with r > 1, as jsj ! 1 and that f�(s) admits the

singular expansion above for <(s) 2 (�M;��). Then

f(x) satis�es the asymptotic expansion of above at x = 0+.
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Appendix C: Saddle Point Method

Input: A function g(z) analytic in jzj < R (0 < R <

+1) with nonnegative Taylor coeÆcients and \fast growth"

as z ! R�. Let h(z) := log g(z)� (n+ 1) log z.

Output: The asymptotic formula for gn := [zn]g(z)

derived from the Cauchy coeÆcient integral

gn =
1

2i�

Z



g(z)
dz

zn+1
=

1

2i�

Z



eh(z) dz

where 
 is a loop around z = 0.

(S1). Saddle point contour. Require that g0(z)=g(z) !
+1 as z ! R�. Let r = r(n) be the unique positive

root of the saddle point equation

h0(r) = 0 or
rg0(r)

g(r)
= n+ 1;

so that r ! R as n!1. The integral above is evaluated

on 
 = fz j jzj = rg.
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(S2). Basic split. Require that h000(r)1=3h00(r)�1=2 !
0. De�ne ' = '(n) called the \range" of the saddle point

by

' =
���h000(r)�1=6

h
00
(r)

�1=4
��� ;

so that ' ! 0, h00(r)'2 ! 1, and

h000(r)'3 ! 0. Split 
 = 
0 [

1, where 
0 = fz 2 
 j j arg(z)j � 'g; 
1 =

fz 2 
 j j arg(z)j � 'g:

(S3) Elimination of tails. Require that jg(rei�)j �
jg(rei')j on 
1. Then, the tail integral satis�es the trivial

bound, �����
Z

1

e
h(z)

dz

����� = O

�
je�h(rei')j

�
:
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(S4) Local approximation. Require that h(rei�) �
h(r) � 1

2r
2�2h00(r) = O(jh000(r)'3j) on 
0. Then,

the central integral is asymptotic to a complete Gaussian

integral, and

1

2i�

Z

0

e
h(z)

dz =
g(r)r�np
2�h00(r)

�
1 +O(jh000(r)'3j)

�
:

(S5) Collection. Requirements (S1); (S2); (S3); (S4),

imply the estimate:

[zn]g(z) =
g(r)r�np
2�h00(r)

�
1 +O(jh000(r)'3j)

�
� g(r)r�np

2�h00(r)
:
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