
Generalized Belief Propagation
and Free Energy Minimization

Jonathan Yedidia
Mitsubishi Electric Research Labs (MERL)

Bill Freeman (MIT)
Yair Weiss (Hebrew University)



Outline

• Motivation & factor graphs
• Standard belief propagation
• Free energy approximations
• Methods to generate “valid” region-based

approximations: (Bethe, junction graphs,
cluster variational method, region graphs)

• Generalized belief propagation



Factor Graphs
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Computing Marginal Probabilities

• Decoding error-correcting codes
• Inference in Bayesian networks
• Computer vision
• Statistical physics of magnets
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Fundamental for

Non-trivial because of the huge number
of terms in the sum.



Error-correcting Codes
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Marginal Probabilities = A posteriori bit probabilities

(Tanner, 1981

Gallager, 1963)



Bayesian Networks
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Marginal Probabilities=
“beliefs” about possible
diagnoses

(Pearl, 1988)



Computer Vision
(Geman & Geman 1984)

Marginal Probabilities=
“beliefs” about possible
underlying scenes



Statistical Physics
(Ising 1925, Edwards &
Anderson 1975)

Marginal Probabilities=
local magnetization



Simplifications We Will Not Exploit

• Functions may be parity checks (codes)
• Functions may be conditional

probabilities (Bayes nets)
• Functions may be only pair-wise

(computer vision)
• Functions may have translational

symmetry (statistical physics)



Standard Belief Propagation
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The “belief” is the BP approximation
of the marginal probability.



BP Message-update Rules
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BP Is Exact for Trees
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BP Is Exact for Trees
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BP Is Exact for Trees
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BP Is Exact for Trees
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Variational (Gibbs) Free Energy
Kullback-Liebler Distance:
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“Boltzmann’s Law” (definition of “energy”):
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minimized when
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Region-based Approximations to the
Gibbs Free Energy
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Exact:

Regions:

(intractable)

(Kikuchi, 1951)



Defining a “Region”
   A region r is a set of variable nodes Vr

and factor nodes Fr such that if a factor
node a belongs to Fr , all variable nodes
neighboring a must belong to Vr.

Regions

Not a
Region



Region Definitions
rX
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Region states:

Region beliefs:

Region energy:

Region average energy:

Region entropy:

Region free energy: ( ) ( ) ( )rrrrrr bHbUbG −=



Important Technical Point
   For our approximations, we will require
that all br(Xr) are locally consistent with
each other, but we do not seek, nor even
require the existence of, a global b(X) such
that                                   .

   This contrasts with mean field theory,
where one seeks a tractable global function
b(X) that minimizes the Gibbs free energy.
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“Valid” Approximations
Introduce a set of regions R, and a counting number cr
for each region r in R, such that cr=1 for the largest
regions, and for every factor node a and variable node i,
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Count every node once!

( ) ( )�
∈

=
Rr

rrrr bGcbG }{

Indicator functions



Entropy and Energy

•                        :  Counting each factor
node once makes the approximate
energy exact (if the beliefs are).

•                      :  Counting each variable
node once makes the approximate
entropy reasonable.
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Methods to Generate Valid
Region-based Approximations

Cluster
Variational

Method

(Kikuchi)

Junction graphs

Aji-McEliece

Region Graphs

Bethe

(Bethe is example of Kikuchi for Factor graphs with no 4-cycles;
Bethe is example of Aji-McEliece for “normal” factor graphs.)

Junction trees



Definition of a Region Graph
• Labeled, directed graph of regions.
• Arc may exist from region A to region B

if B is a subset of A.
• Sub-graphs formed from regions

containing  a given node are connected.
•                   where        is the set of

ancestors of region r.
• We insist that
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Example of a Region Graph
A,C,1,2,4,5 B,D,2,3,5,6 C,E,4,5,7,8 D,F,5,6,8,9

2,5 C,4,5 D,5,6 5,8

  5[5] is a child of [2,5]



Bethe Method
Two sets of regions:

   Large regions containing a
single factor node a and all
attached variable nodes.

   Small regions containing a
single variable node i.
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(after Bethe, 1935)



Bethe Approximation to
Gibbs Free Energy
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Equal to the exact Gibbs free energy when the
factor graph is a tree because in that case,
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Minimizing the Bethe Free Energy
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Bethe = BP
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Junction Graphs

A labeled directed graph with two types of regions:

    Large regions that are not sub-regions of any
other region.

    Small regions that are sub-regions of every region
they are connected to.

Must obey the junction graph condition:

    Every sub-graph obtained by selecting only those
regions containing any particular node will be a tree.
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Example of (Aji-McEliece)
Junction Graph

A,C,1,2,4,5 B,D,2,3,5,6

E,4,5,7,8 F,5,6,8,9

2,5

4,5 5,6

8

(But small regions can contain factor nodes or be
connected to more than two large regions in general.)



Theorems About Junction Graphs

• Stationary points of junction graph free
energy are fixed points of “generalized
distributive law” message passing
algorithm.

• When the junction graph is a tree, the
message-passing algorithm is exact
(junction tree algorithm).



Cluster Variational Method

Form a region graph with an arbitrary number of
different sized regions. Start with largest regions.

    Then find intersection regions of the largest
regions, discarding any regions that are sub-regions
of other intersection regions.

    Continue finding intersections of those intersection
regions, etc.

    All intersection regions obey                      , where

S(r ) is the set of super-regions of region r.
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Region Graph Created Using CVM
A,C,1,2,4,5 B,D,2,3,5,6 C,E,4,5,7,8 D,F,5,6,8,9

2,5 C,4,5 D,5,6 5,8

  5



Just count every node once!
Bethe Method, Junction Graph Method, and Cluster
Variational Method are essentially ways to guarantee
that every variable and factor node is counted once.

   Example of region graph that cannot be created using
other methods:

A,B,D,F,G,I,K,L

1,2,3,4,5,6,7,8,9

C,D,E,F,G,H,I,J

1,2,3,4,5,6,7,8,9

D,2,5 F,4,5 G,5,6 I,5,8

    5

A B

C D E

F G

H I J

K L

1 2 3

4 5 6

7 8 9



Minimizing a Region Graph
Free Energy

• Minimization is possible, but it may be
awkward because of all the constraints
that must be satisfied.

• We introduce generalized belief
propagation algorithms whose fixed
points are provably identical to the
stationary points of the region graph
free energy.

(Yuille 2001, Welling & Teh 2001)



Generalized Belief Propagation

• Belief in a region is the product of:
– Local information (factors in region)
– Messages from parent regions
– Messages into descendant regions from

parents who are not descendants.
• Message-update rules obtained by

enforcing marginalization constraints.



  58

2356 4578 5689

  25   45   56

1245

   5

Generalized
Belief
Propagation

1 2 3

4 5 6

7 8 9



  58

2356 4578 5689

  25   45   56

1245

   5

Generalized
Belief
Propagation

585654525 →→→→∝ mmmmb

1 2 3

4 5 6

7 8 9



  58

2356 4578 5689

  25   45   56

1245

   5

Generalized
Belief
Propagation

]][[ 585652457845124545 →→→→→∝ mmmmmfb

1 2 3

4 5 6

7 8 9



  58

2356 4578 5689

  25   45   56

1245

   5

Generalized
Belief
Propagation

1 2 3

4 5 6

7 8 9 ][ 452514121245 ffffb ∝ ][ 585645782536 →→→→ mmmm



1 2 3

4 5 6

7 8 9

Generalized
Belief
Propagation

1 2 3

4 5 6

7 8 9

�

�=
4

),()( 544555
x

xxbxb

=

Use Marginalization Constraints to
Derive Message-Update Rules



1 2 3

4 5 6

7 8 9

Generalized
Belief
Propagation

1 2 3

4 5 6

7 8 9

�

�=
4

),()( 544555
x

xxbxb

=

Use Marginalization Constraints to
Derive Message-Update Rules



1 2 3

4 5 6

7 8 9

Generalized
Belief
Propagation

1 2 3

4 5 6

7 8 9

�

�=
4

),()( 544555
x

xxbxb

=

Use Marginalization Constraints to
Derive Message-Update Rules



1 2 3

4 5 6

7 8 9

Generalized
Belief
Propagation

1 2 3

4 5 6

7 8 9

�

� →→→ ∝
4

),(),(),()( 5445785445125445554
x

xxmxxmxxfxm

=

Use Marginalization Constraints to
Derive Message-Update Rules



Generalized Belief Propagation
• Theorems:

– Fixed points equivalent to stationary points of region
graph free energy (messages are complicated
combinations of Lagrange multipliers).

– Exact when region graph is a tree.



Generalized Belief Propagation
• Theorems:

– Fixed points equivalent to stationary points of region
graph free energy (messages are complicated
combinations of Lagrange multipliers).

– Exact when region graph is a tree.
• Empirically, more likely to converge than

ordinary BP, but not guaranteed.



Generalized Belief Propagation
• Theorems:

– Fixed points equivalent to stationary points of region
graph free energy (messages are complicated
combinations of Lagrange multipliers).

– Exact when region graph is a tree.
• Empirically, more likely to converge than

ordinary BP, but not guaranteed.
• Can be nearly as fast as ordinary BP, but

much more accurate. Complexity
depends on details of region graph.



10x10 Ising Spin Glass

Random
interactions

Random
fields





GBP Decoding of Parity Check Codes

Cluster Variational Method with largest clusters
consisting of all the nodes in a parity check.

Toy example



New messages

1

2

3

4 5 ),( 5445123 xxm →





Future Directions

• GBP for soft-decoding of BCH codes and
other interesting codes.

• GBP for Bayes nets:
    Daphne Koller (Stanford): “GBP made possible an order of

magnitude increase in accuracy over standard BP, at very little
additional cost, for networks with hundreds of thousands of nodes.”

• GBP in physics: although cluster variational
method was known, region graphs and the
equivalence with belief propagation is new.



Conclusions
• Standard BP equivalent to minimizing the

Bethe free energy.
• Bethe method, junction graph method, and

cluster variational method are all sub-classes
of the more general region graph method for
generating valid free energy approximations.

• GBP is equivalent to minimizing region graph
free energy, and is exact when the region
graph is a tree.

• GBP is a straightforward and efficient method
for obtaining accurate estimates of marginal
probabilities.


