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Factor Graphs  (schischang,

et.al. 2001)
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Computing Marginal Probabillities
ps(Xs) = 2 P(X)

X\Xg

Fundamental for

e Decoding error-correcting codes
* Inference in Bayesian networks
e Computer vision

o Statistical physics of magnets

Non-trivial because of the huge number
of terms In the sum.



(Tanner, 1981
Gallager, 1963)

Error-correcting Codes
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Marginal Probabilities = A posteriori bit probabilities



Bayesian Networks

(Pearl, 1988)
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Marginal Probabilities=
“beliefs” about possible
E diaghoses
D
X (example from

Lauritzen, 1992)



Computer Vision

(Geman & Geman 1984)

Marginal Probabilities=
“beliefs” about possible

underlying scenes




Statistical Physics

(Ising 1925, Edwards &
Anderson 1975)
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Simplifications We Will Not Exploit

* Functions may be parity checks (codes)

* Functions may be conditional
probabilities (Bayes nets)

* Functions may be only pair-wise
(computer vision)

* Functions may have translational
symmetry (statistical physics)



Standard Belief Propagation
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The “belief’ is the BP approximation

of the marginal probability.



BP Message-update Rules

using b(x)= > b,(X,), we get
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BP Is Exact for Trees
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BP Is Exact for Trees
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BP |s Exact for Trees
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BP |s Exact for Trees
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Variational (Gibbs) Free Energy

Kullback-Liebler Distance:
b(X)
D(b|l p) = 2_b(X)In
Zx: p(X)
“Boltzmann’s Law” (definition of “energy”):

p(X) = e[~ E(X)

U (b) - Hi(b)

}
D(b|l p) = > b(X)E(X)+> b(X)Inb(X)+InZ
X X

!

—

Gibbs Free Energy G(b);
minimized when b(X) = p(X)



Region-based Approximations to the
Gibbs Free Energy (Kikuchi, 1951)

Exact: G[b(X)] (intractable)
Regions: G[{b. (X, )}]




Defining a “Region”

A regionr is a set of variable nodes V,
and factor nodes F, such that if a factor
node a belongs to F,, all variable nodes
neighboring a must belong to V..




Region Definitions

Region states: X,
Region beliefs: o (Xr)
Region energy: E (Xr ) = —Zln fa(Xa)

allF,

Region average energy: ( ) Zb( ) ( )

Region entropy: ( ) Zb( )Inb( )

Region free energy: G, (br ) =U, (br )— H, (br )



Important Technical Point

For our approximations, we will require
that all b,(X,) are locally consistent with
each other, but we do not seek, nor even
require the existence of, a global b(X) such

that b,(X,)= > 'b(X) .

X\X,

This contrasts with mean field theory,
where one seeks a tractable global function
b(X) that minimizes the Gibbs free energy.



“Valid” Approximations

Introduce a set of regions R, and a counting number c,
for each region r in R, such that c,=1 for the largest
regions, and for every factor node a and variable node i,

Zcrl(a\D Fr):Zcr/L(i V. )=1

rlR Indicator functions

Count every node once!

G({b})=3c.G (b )

rt’R




Entropy and Energy

Y cI(adF )=1: Counting each factor
node once makes the approximate
energy exact (if the beliefs are).

« Y'c1(i0V.)=1: Counting each variable
node once makes the approximate
entropy reasonable.



Methods to Generate Valid
Region-based Approximations

Region Graphs

Junction graphs
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. .
. .
. .
.* ‘e
.
‘e
.

Aji- McEllece

Cluster
Variationd
Method

(Kikuchi)

/' Junction trees

. .
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(Bethe is example of Kikuchi for Factor graphs with no 4-cycles;
Bethe is example of Aji-McEliece for “normal” factor graphs.)



Definition of a Region Graph

Labeled, directed graph of regions.

Arc may exist from region A to region B
If B Is a subset of A.

Sub-graphs formed from regions
containing a given node are connected.

c, =1- D c, where A(r) Is the set of

SLIA(r)

ancestors of region r.

We Insist that
Ja,0i:> cl(@dF.)=>clI(iDV,)=1

rtR



Example of a Region Graph

A.C.1245 B,D,2,3,5,6 CEA4578 D.F.56.89
v >< >< >< v
25 5,8

\\H//

[5] is a child of [2,5] 5




Bethe Method

Two sets of regions:

(after Bethe, 1935)

2

Large regions containing a A B
single factor node a and all
attached variable nodes. |c, =1 C 5 D

Small regions containing a E F
single variable node i. |c. =1-d

8 9
A;1,2,45 B;2,3,5,6 C;4,5 D;5,6 E;4,5,7,8 F;5,6,8,9
Sy A

Y
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Bethe Approximation to
Gibbs Free Energy

G =2 006 20| 3 0-0 )0 (It )

a

Equal to the exact Gibbs free energy when the
factor graph Is a tree because In that case,

() =] ba(xa)ﬂ b (%)™



Minimizing the Bethe Free Energy
L :GBethe+Zyi{Zb|(Xi)_]}
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Bethe = BP

Identify | A;(¢)=In [ |m,_; (%)

BON(i)#Za

to obtain BP equations:
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Junction Graphs

A labeled directed graph with two types of regions:

Large regions that are not sub-regions of any
other region. |G =1

Small regions that are sub-regions of every region
they are connected to. |c, =1-d,

Must obey the junction graph condition:

Every sub-graph obtained by selecting only those
regions containing any particular node will be a tree.



Example of (Aji-McEliece)
Junction Graph

A,C,1,2,4,5 4@ <+ ByD12131516

! !

1 1

E,4,5,7,8 —><— F,5,6,8,9

(But small regions can contain factor nodes or be
connected to more than two large regions in general.)




Theorems About Junction Graphs

o Stationary points of junction graph free
energy are fixed points of “generalized
distributive law” message passing
algorithm.

 \When the junction graph Is a tree, the
message-passing algorithm is exact
(Jjunction tree algorithm).



Cluster Variational Method

(Kikuchi, 1951)

Form a region graph with an arbitrary number of
different sized regions. Start with largest regions. |C, =1

Then find intersection regions of the largest
regions, discarding any regions that are sub-regions
of other intersection regions.

Continue finding intersections of those intersection
regions, etc.

All intersection regions obey |& =1 2.C | where
SIS(r)

S(r) is the set of super-regions of region r.




Region Graph Created Using CVM

A.C.1245 B,D,2,3,5,6 CEA4578 D.F.56.89
v >< >< >< v
25 5,8

\\H//
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Just count every node once!

Bethe Method, Junction Graph Method, and Cluster
Variational Method are essentially ways to guarantee
that every variable and factor node is counted once.

Example of region graph that cannot be created using
other methods:

A,B,D,F,G,IK,L C,D,E,F,G,H,IJ
1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8,9

b=\

D,2,5 F.4,5 G,5,6 ,5,8

e




Minimizing a Region Graph
Free Energy

 Minimization is possible, but it may be
awkward because of all the constraints
that must be satisfied. (vuille 2001, Welling & Teh 2001)

* We Iintroduce generalized belief
propagation algorithms whose fixed
points are provably identical to the
stationary points of the region graph
free energy.



Generalized Belief Propagation

« Belief In a region Is the product of:
— Local information (factors in region)
— Messages from parent regions

— Messages into descendant regions from
parents who are not descendants.

 Message-update rules obtained by
enforcing marginalization constraints.



Generalized
Belief
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Generalized
Belief
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Generalized 1245 | 2356 | | 4578| | 5680
selief [>Tl >
Propagation
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Generalized !
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Ger_]erallzed Use Marginalization Constraints to
Belief Derive Message-Update Rules

Propagation

b (%) = Zb45(x41 Xs)



Ger_]erallzed Use Marginalization Constraints to
Belief Derive Message-Update Rules

Propagation

b (%) = Zb45(x41 Xs)



Ger_]erallzed Use Marginalization Constraints to
Belief Derive Message-Update Rules

Propagation
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Ger_]erallzed Use Marginalization Constraints to
Belief Derive Message-Update Rules

Propagation
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Generalized Belief Propagation

e Theorems:

— Fixed points equivalent to stationary points of region
graph free energy (messages are complicated
combinations of Lagrange multipliers).

— Exact when region graph is a tree.



Generalized Belief Propagation

e Theorems:

— Fixed points equivalent to stationary points of region
graph free energy (messages are complicated
combinations of Lagrange multipliers).

— Exact when region graph is a tree.

« Empirically, more likely to converge than
ordinary BP, but not guaranteed.



Generalized Belief Propagation

e Theorems:

— Fixed points equivalent to stationary points of region
graph free energy (messages are complicated
combinations of Lagrange multipliers).

— Exact when region graph is a tree.
 Empirically, more likely to converge than
ordinary BP, but not guaranteed.

e Can be nearly as fast as ordinary BP, but
much more accurate. Complexity
depends on detalls of region graph.



10x10 Ising Spin Glass
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GBP Decoding of Parity Check Codes

Toy example

Cluster Variational Method with largest clusters
consisting of all the nodes in a parity check.



New messages
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Future Directions

 GBP for soft-decoding of BCH codes and
other interesting codes.
 GBP for Bayes nets:

Daphne Koller (Stanford): “GBP made possible an order of
magnitude increase in accuracy over standard BP, at very little
additional cost, for networks with hundreds of thousands of nodes.”

 GBP In physics: although cluster variational
method was known, region graphs and the
equivalence with belief propagation is new.



Conclusions

Standard BP equivalent to minimizing the
Bethe free energy.

Bethe method, junction graph method, and
cluster variational method are all sub-classes
of the more general region graph method for
generating valid free energy approximations.
GBP Is equivalent to minimizing region graph
free energy, and is exact when the region
graph is a tree.

GBP is a straightforward and efficient method
for obtaining accurate estimates of marginal
probabilities.



