Minimal Surfaces of Rotation in a special
Randers Space

Marcelo Souza Ket1 Tenenblat



SEecial Randers Sg_a_ce

(V21 Fy), (n + 1)-dimensional real vector space

equipped with a Randers metric

Fp(x,y) = ax,y) + 3(x,y).

(x,y) 1s in the tangent bundle TV,

« is the Euclidean metric,

-

7 1s a 1-form whose norm b satisfies 0 < b < 1.

w.l.o.g 0 =bdx,.1.

We will consider:

e Differential equation for a minimal immer-

sion ¢ : M® — (VL Fy)

¢ ODE for minimal surfaces of rotation in (V3 Fy)

with rotating axis xj.



Theorem

Up to homothety, there exists a unique for-

ward complete minimal surface of rotation on a

special Randers space (V3 Fy), foreach b, 0 < b < 1.

e The surface is embedded;

e Symmetric with respect to a plane perpen-

dicular to the rotation axis;

e It is generated by a concave plane curve.

e When v/3/3 <b <1, the slope of the tan-
gent lines to the generating curve is bounded

by

VI=b?

+
3b% -1




Notation

M" a C* n-dim manifold, TM tangent bundle

m: TM — M projection

(x!,...,x") local coordinates on U C M.

; and dx' coordinate basis for T,M and T M
Xl

(x,y¥) be a point of TM, xe M,y € T{M

(x!,y') local coordinates on 7-}(U) C TM, where

_ ia




Finsler Space

F:TM — [0,0) is called a Finsler metric on

M if F has the following properties:

 [i] (Regularity) F € C>* in TM \ {0};
[ii] (Positive Homogeneity)
F(x,ty) =tF(x,y), Vt > 0,(x,y) € TM:
[iii] (Strong Convexity)
g = (gij(x,y)) = (%[Fz(x, Y>]yiy,-)

is positive definite at each point of TM \ {0}.

The pair (M, F) is called a Finsler space.
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Special Finsler Spaces:

e Minkowski space: V" an n-dimensional real

vector space with a Minkowski norm F where

F(x,y) depends only on y.

e A Randers metric on M

F(x,y) =alx,y) + 8(x,y),

a(x,y) = Jay(x)ylyd, B(x,y) = bk(x)y*,

ajj components of a Riemannian metric
ij L ) L]
a" 1inverse matrix

by components of the 1-form 3, whose norm
b = aijbibj

satisfies 0 <b < 1.



Finsler volume form

(M™, F) a Finsler space, then F induces a smooth

volume form
dup = o(x)dx; A ... Adx,

where
B vol (B")
~ vol{y € Rn: F(x,zyi%) <1}

0(x)

B" = unitary ball in R"

vol = Euclidean volume



-~

(M™ F) a Finsler space

¢ M" — (M™ F) an immersion.

There is an induced Finsler metric on M,

—

Flx,y) = (¢'F)x,y) = Flox), ou(y), Y (x,y) € TM

@ : M"* — (V™1 F,), special Randers space.

X:(X7), 7:17”'7117

: — . : 8(10i
- 1 & — . e 1 —
gp(x)—(cp(x))EV,l-—l, ,n+1, z et

The volume form in the induced metric is

n+1

dup = (1 — b?A7z2 1224 T /det A dx? - - - dx,

where

n+1 .

A=(A)=(Tda| and (A7) =(a,)"

1=1 T



Mean Curvature

Introduced by Z. Shen
0 M® — (M™, F) an immersion in Finsler space.
o M® — (M™ F), t € (—¢,¢) such that

wo = ¢ and ¢y = ¢ outside a compact 2 C M.

dpy

F¢ = ¢;F induced metrics and X = D t=0

Consider the function V(t) = |, dup,. Then

/M d,UF

H._ is the mean curvature of the immersion o.
H.(v) depends linearly on v.
H, vanishes on ¢,(TM).

The immersion is minimal when H_ = 0.




Mean Curvature

-~ ~

Ho(X)|x = az( log at(x))|t:0 — div [P_ (X)]ix
where
~ dlog o 5, 0
PQ*(X) - aZ£/ X 8)(7
and z/ = 2:: Then
”H()—l 0% 9%y %0 0Y)  Oo i
A= 0210z 0% OX" axl(f?zl o%°  Oxi

Whenever (V,F) is a Minkowsky space,

Hov) = 2| To 0L
A= 0210z} 0% X'l




Completeness of a Finsler manifold

(M, F) a Finsler manifold, ( F posit. homog. )
o :la,b] — M a piecewise differentiable curve.

The integral length of o

‘ do
Lio) = [ F (0.5t
['pyp,) 1s the set of all piecewise C™ curves

o la,b] — M, with o(a) = pg, o(b) = ps.

Define a map d : M x M — [0, 00) by

d(po,p1) == _mf L(o).

UGF(P()-P1 )



(M, d) satisfies the two axioms of a metric space.

(1) d(po, p1) > 0, equality holds <— Po = P1
(ii) d(po,p1) < d(po,p2) + d(p2, p1)-

IfF(x,ty) = |t|F(x,y),Vt € R, (F absol. homog.)

(iii) d(po, p1) = d(p1, Po)

Generically, the distance function d does not

have the symmetry property.




A Finsler manifold (M, F) is forward complete

with respect to the distance function d if every

forward Cauchy sequence converges in M.

(M, F) 1s forward geodesically complete if ev-

ery geodesic v(t), a <t < b, parametrized to have

constant Finsler speed, can be extended to (a, co).

Similarly, one defines a backward complete and

backward geodesically complete Finsler space.

If F is absolutely homogeneous of degree one,

then forward and backward geodesic complete-

ness either both hold or both fail.

This is the case for Riemannian metrics.



The differential equation of minimal

hypersurface in a special Randers space

Theorem: ¢: M" — (V1 Fp) an immersion

~with local coordinates ((x.)) is minimal <>

(n? - 1)6B 6B
4 070z

0°B oBoC 0BOoC

n—+1
g 17 B (8z§6z§7c T 0k od " 0ziod)
92C | 25
_ 2 1 _
1 -B) 6’zi€8zl;7] oo’

Vv = vie; € VPl e, canonical basis of V1,

. . QY
C=+VdetA, B=Db*A"zM"'2)"! 2z = 890 ,
Xa
ntl r -1
A=(an)=(Ead] (A7) = (A

Remark: If ¢ is a minimal then ¢ = Ay is min-

imal



Corollary: ¢ : M? — E,_Fb)_ an immersion, with

local coordinates (cp’(x ). ¢ is minimal <~

12E2 — (2E + C?)29C 0C _3C O°E
C(C2 - E) 0z 0z} 2 0z)0z

§(2E—Cz) 6‘C@E+808E N
2\ C2-E )\02.0z) 0z} 0z}

3C OEOE (2E + C?) 9%C? } o 0

4(C*—E)od oz 2C 07z | oxoxi
O
ox)

n+1 i i - 1
A=(an)=(Ead) (A7) = (A

Vv =vie; € V3 where C = v/detA, zl =

3 A - 1 if =2
E = b? — 1)t gKzKz3,3 T = . ’
121( ) T 2 if T=1.



Minimal surface generated by rotating a

plane curve around a fixed axis.

Theorem. An immersion into (V3 Fy) given by
o(t,0) = (fp(t) cos b, fp(t)sinb, t), £, > 0.

is minimal <= f}, satisfies

—fpfy [(1 — b? + (£)°) (1 + 2b% + (1 — 3b?) (£})") + 3b* (£)"]
+(1+(£)*) (1= b2+ (£)*) [1 = b* + (1 - 3b%) (£)°] = 0.

e Whenever b = 0, V° is the Euclidean space,

we get the classical differential equation for

minimal surfaces of rotation in R?3.



The mean curvature vanishes on tangent vec-

tors of the immersion ¢, hence we only need

to consider v such that {v, o, oy} is lin. ind .

We consider
v = (—cosf, —sind, fi(t)).

[ I 1 a i
With the notation x'=t, x* =6 and z!= agp“ )
XC

we have

Zg = 0¢1 903(5)(’7 =0, VE, 7.

[InY



Existence and uniqueness of solutions for the

equation

The diff. eq. for fi,(t) can be rewritten_ as

X1 — X2
X1X2Qb(x2) = Pp(x2),

where x;(t) = fp(t) and x3(t) = x1(t),

Pp(x2) = (1 +x2)(1 — b? +x3)[1 — b? + (1 — 3b?)x3],

Qb(x2) = (1 — b% +x3)[1 + 2b* + (1 — 3b?)x3] + 3b*x2.



Remarks

e IfO<bKL ?, then Pp(x3) > 0 and Qp(x2) > 0.

i If%§<b<1,then:

1 — b2
Pp(£N;(b)) =0, where N;(b) = TR

Qb(xN2(b)) = 0, where

_ |1 —Db2%+3b*+b2/12 — 12b2 + 9b?

N2(b) 3b2 — 1
Py(x2)|— - - 0 + + 0 - — ~—
Qx2)— 0 + + + + + + 0 -
X2 i i i | !
—Nz(b) —Ny(b) 0 Ni(b) N2z(b)

There are no solutions for initial conditions

X1<t0) = a ?é 0, Xz(t()) = ﬂ:Nz(b)

U



Remark§:

1
If fy(t) is a solution then —fi(a+ct), ¢ #0, is
C .

also a solution

We only need to consider two cases:

Case 1: 0 < b < \/Tg, with initial conditions
f,(0)=a >0 and f(0) =d € R;

Case 2: %—5 < b <1, with initial conditions
f,(0) =a >0 and £;(0) =d # £N3(b).

2



Lemma. Let 0 <b < ? and f,(t) be the solu-

tion defined on the maximal interval J, satisfy-
ing the initial conditions f,(0) =a > 0,f{(0) =d € R,
then

(i) fp(t)ff(t) > 0,Vt € J;

(ii) there exists t; € J such that f}(t;) = 0;

(iii) f, is symmetric with respect to the straight

line t = t;.

Lemma. Let \/Tg <b <1, and f,(t) be the solu-
tion with initial conditions f},(0) = a >0, fi(0) = £Ny(b)
Then

fi(t) = £N;(b)t + a



Lemma. Let g <b <1 and f,(t) be the solu-

tion defined on the maximal interval J, with

initial conditions f,(0) =a > 0, f},(0) = d, where

|d| < Ny(b). Then

(i) [f(t)] < Ny(b), YVt € J;
(i) fip(t)f/(t) > 0, Vt € J;
(iii) J = (—00, 0);

(iv) there exists t; € J such that f](t;) = 0;

(vi) the curve f,(t) does not intersect the line

sign(d) N;(b)t +a, Vt # 0.

Nl(b)t+a
~
/\ ~ /ﬂ\
ST 2 (
\ s | | \
- P .
{ - t1 0 J
V7 \
o - .o~ — \ l

o



Lemma. Consider ? < b <1 and fy(t) the so-

lution defined on the maximal interval J, with
initial conditions f,(0) =a > 0, f(0) =d, with
Nl(b> < Idl < Nz(b) Then

(i) Ni(b) < |fi(t)] < Nz(b),Vt € J;
(i), ()£ (t) < 0,Vt € J;

(ii1) the curve f,(t), t # 0 is between the lines
N;(b)t +a and Ny(b)t +a when d > 0
—N3(b)t + aand —N;(b)t + awhend < 0.

(iv) J is a bounded open interval.

q Y



Lemma. Consider %—:i < b <1 and fi(t) the so-

lution defined on the maximal interval J, with
initial conditions f,(0) =a > 0, f{(0) =d. with
|d| > N3(b). Then

(i) |f(t)] > Na(b), Vt € J ;
(i) fpo(t)f/(t) >0, Vt € J ;

(iii) the curve f,,(t) for t # 0 does not intersect
the line sign(d) N3(b)t + a.

(iv) J is bounded from below (resp. above)

when d > Ny(b) (resp. d < —Ny(b)).

/ Na(b)t +a




Proposition. Consider the minimal surface of

rotation M? in (V3 F}) generated by the curve
(0, fy(t),t), where f}, is the solution with initial

conditions:  f;,(0) =a > 0 and f(0) =d.

eIf0<b< @ = Mis complete.(%"wa*d)

cIf‘/T§<b<1and

ld| < Ny(b) = Mis complete.(@orW“"‘d\

|d| > Ny(b), |d| # N3(b) = M is not complete.




Remarks:

1. When d = +N;(b), then the surface is a cone

generated by the straight line fy,(t) = =N;(b)t + a.

2. The minimal cones converge to a cylinder

when b — 1, since lim N{(b) =0.
b—1

3. For the complete surfaces we only need to
consider initial conditions:

f,(0) = a > 0 and £,(0) = 0.




