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0. Finsler spaces = Differentiable length spaces

Let M be a differentiable manifold and v : |a,b] — M is a curve.

The length of ~ is
b
\ 15(6) 1.

Finsler geometry is actually the geometry of a simple integral and
is as old as the calculus of variations.

Hilbert: Paris address of 1900 devoted Problem 23 to the

variational calculus of an invariant integral and its geometrical .

N \
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Relationships between topology and curvature

~

Gauss-Bonnet-Chern Theorem; Bao-Chern 96, Shen 98

Cartan-Hadamard Theorem, Bonnet-Myers Theorem, Synge’s
Theorem, ; Auslander ’555

The First Comparison Theorem of Rauch; Bao-Chern 93

Bishop-Gromov Volume Comparison Theorem; Shen '97

Sphere Theorem; Dazord ’68, Kern '71, Rademacher '02

\
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bb Alexandrov space is a length space with (sectional) curvature /
bounded below or above in the distance comparison sense.

K > 0; the concavity of distance functions; Cheeger-Gromoll
Theorem, Yamaguchi Fibration Theorem, Perelman and
Cheeger-ColdingStability Theorems

K < 0; the convexity of distance functions; Mostow-Kleiner
Rigidity Theorem, Besson-Courtois-Gallot Theorem.

Remark Alexandrov and Finsler geometry

(1) Fisnler spaces whose curvature is bounded below or above in
the distance comparison(Alexandrov) sense are automatically

Riemannian.

(2) If in a Minkowski space(normed space) an angle in the sense of
Alexandrov exists for any geodesic rays, then the space is Euclidian.

/mﬁgocm problem arises here. \
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1. Motivation and Historical Remarks

Boundary Rigidity Problems: Let (M,0M, g9) and (M,0M, g) be
compact Riemannian manifolds with boundary. The metric g on
induces a distance function d from OM x OM to R. For what
(M,0M, go) is it true that any (M,0M, g) with dy = d must have
go isometric to g?

[Michel 81, Gromov ’83, BCG ’96] Any compact subdomain with
smooth boundary of R™, hyperbolic space H"™, or the open
hemisphere of S™ are boundary rigid.

[Arcostanzo '94|* The boundary rigidity problem has a negative
answer in the Finsler case; [Yim-K *00]

[Howard ’96] compact subdomain on Lorentzian surfaces.

N \
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(Finsler Version) Hopf Conjecture:

[Burago, Ivanov '94] Any Riemannian metric without conjugate

points on torus is flat.

|[Busemann ’55] There are metrizations of the torus without
conjugate points for which the universal covering space is not

Minkowskian. For example,

d((z1,91), (T2,92)) = V(z1 — 22)2 + (y1 — y2)?
+|7y1 + sin(27y1) — Ty — sin(27wys)|,

l.e.,

Fa((z,y); (u,v)) = Vu? + v2 4+ |Tv + 27w cos(27y)|.

N \
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[Dazord "71] If a two-dimensional torus is a Landsberg and has no

conjugate points, then the space is isometric to a flat Finsler torus.

(sketch of proof) Gauss-Bonnet Theorem

\ Ricv - 0¢ = 4m*x (M),
SM

where o( 1s the volume of the indicatrix.

If the space is compact and no conjugate points then the above
integral > 0 and equality holds iff the flag curvature vanishes.

[Burago’s problem ’01] If a Finsler torus has no conjugate points, is

it alf-equivalent to a flat one?

alf-equivalent: there exist F': S*M — S*N and f : S*M — R such
that F*wy = wy + df.

N \
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\mggmo-?%@oe 's three problems: /

(1) Minimality of flats in Banach spaces: Does a ball in an

n-dimensional affine subspace of a Banach space minimize

volume among all n-dimensional surfaces with same boundary?

(2) Finsler filling volume problem: Does its flat Finsler metric have
the least volume among all Finsler metric whose distances
between boundary points majorize those of the Banach

distance function?

(3) Finsler volume growth problem: Does the volume of balls in
the universal cover of a Finsler torus asymptotically grows at

lest as fast as that in a Banach space?

[Burago-Ivanov '01] For every n, the three problems are

equivalent.

/ [Ivanov '01] (1) is true in n = 2. \
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2. Preliminaries

Let M be an n-dimensional smooth manifold and T'M denote its
tangent bundle. A Finsler structure on a manifold M is a map
F :TM — |0,00) which has the following properties:

(i) F' is smooth on TM :=TM \ {0};
(i) F(ty) = |t[F(y),t € R, y € ToM;
(iii) 3F? is strongly convex, i.e., g;;(z,y) := W%WWMQ (z,y) is
positive definite for all (z,y) € TM. Here
F(z,y) == F(y' 5% c) and y = (y").

N \
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(i) F?is C? on all TM if and only if F is the norm of a

Riemannian metric.

(i) Homogeneous of degree one in y and symmetric condition: The

Hilbert form w = F,,dz® is essentially Hilbert’s invariant

integral in the calculus of variations; the length of curve is «ﬁw w.

(iii) Regularity Hypothesis:
|Chern 48| The Hilbert form w is a global one form on SM
and define a contact structure w A dw # 0 on SM.

[Mercuri "77] The critical point theory for the closed geodesics
problem; Klingenberg

Triangle Inequality

N \
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(2)
(3)

-

Minkowski space

F' is called Riemannian if g;;(x) = gi;(z,y) are independent of y.

F is called locally Minkowskian if ¢;;(y) = g:;(z,y) are independent
of x.

TFAE

(1) Locally Minkowskian space

R = P = 0; under Chern connection

ﬁNmﬁm@T vm& R =0 and SUPgzcB(r) _\: — SUDPgzeB(r) _<<®H&\~_
= o(r) as r — o0

~

\
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\ Spaces of constant curvature /

All of simply connected complete Riemannian manifolds with
constant sectional curvature K are isometric to Eucldean K = 0,

sphere K > 0, or hyperbolic spaces K < 0; Cartan, Hopf.

Zadeh Theorem ’88

Let (M, F') be a compact Finsler manifold with constant flag

curvature R.

(1) If R < 0, then F' is Riemannian.

(2) If R =0, then F is locally Minkowskian.

The non-Riemannian R = 1 examples constructed by Bryant 97
and Bao-Shen ’01, Yim-K ’01, Foulon 02 .

Negatively curved manifolds; Foulon 97, Boland-Newberger '01,

/wamwm Kim 01, Colbois-Verovic 02 \
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\ Mean Tangent Curvature /

Let F, denote the restriction of F' onto 1, M. When F' is
Riemannian, (T, M, F,) are all isometric to the Euclidean spaces
R". For a general Finsler metric F', however, (T, M, F,) may not
be isometric to each other.

Let {e;}7; be a local basis for T M. Put
B.(1) := ,Q = (y*) : F(y'e;) < 1}. Let B®(1) denotes the standard
unit ball in R".

Define the mean distortion p : TM — on o0) by
<o~oAW:AC

.| o(x)

The mean tangent curvature H : T I'M — R is defined by
d

. () = 5 {1 o) oo y
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hmogmnio Meaning of Mean Tangent Curvature /

(i) The mean tangent curvature H(v) measures the average change
of (T, M, F,) in the direction v € T, M.

(i) H = 0 for Finsler manifolds modeled on a single Minkowski
space. In particular, H = 0 for Berwald spaces. Locally
Minkowski spaces and Riemann spaces are all Berwald spaces .

(iii) For a local smooth distance function p, Ap = Ap + H(Vp),
where Ap and Ap denote the Laplacian of p with respect to F
and ¢gV?, respectively. = Bishop-Gromov volume comparison

with an extra condition .

Vau(r) = <oHoAm:|J\ ettsy (1) tdt,
0

where s (t) denotes the unique solution to y + Ay = 0 with

éov =0,y'(0) = 1. \
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hwmmromu-@wogo/\ Volume Comparison Theorem [Shen ’97] /

Let (M, F') be a complete Finsler manifold.

1. If Ricyy > (n — DA, |H| < p, then for all z € M and for any
0 <r < R we have
volp(B(x, 1))
Vau(r)

2. If (M, F') has flag curvature bounded above by A and |H| < p,
then for every x € M and
0 <7 < R <min{inj,,7/vVA(= oo if A <0)} we have
volg(B(x,r)) < volp(B(x, R))
a\v:t?v N a\v:tAmv .

<O-uAmA&.u mvv .

>
N a\yiAmv

Furthermore, we have equality in the above statements if and only
if any Jacobi field J,(t) along -, has the following form

/&:S = sx(t) - u(t), where u = u(t) is a parallel vector field along Q\e.\
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\ 3. Main results /

[Shen 98] Is a reversible Finsler metric with R =1 and H =0
Riemannian metric? Yes, [Yim and K '01]

Duran Theorem. Let (M, F') be an n-dimensional compact

reversible Finsler manifold. Then we have
V(SM) < a(n—1)-volp(M),

with equality if and only if (M, F') is a Riemannian metric.

(sketch of proof) The universal covering M of M is an
n-dimensional Finsler manifold with flag curvature R = 1, then
every geodesic is closed with same length 27 and M is a
diffeomorphic sphere. By Weinstein and Yang’s result, the
symplectic volume of M, V(SM) is equal to V(SS™).

/m:Em R =1 and H = 0, by Bishop-Gromov Volume Comparison \
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Theorem, we have volgp (M) = a(n).

V(§S™) —1) - a(n)

a(n
a(n—1) - -volg(M)
V(SM) =V(55")

>

and hence we obtain V(SM) = a(n — 1) - volp(M). Then by the
equality case of Duran Theorem, we conclude that (M, F) is a

Riemannian manifold, and hence F' is a Riemannian metric.

N \
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Corollary 1

Let (M, F') be an n-dimensional reversible Finsler manifold with
Ricci curvature bounded blew by (n — 1) and mean tangent
curvature H = 0. If the diameter of M is equal to 7, then M is
isometric to the standard Riemannian sphere S™ of constant

sectional curvature one.

Corollary 2

Let (M, F') be an n-dimensional reversible Finsler manifold with
scalar curvature bounded blew by n(n — 1) and mean tangent
curvature H = 0. If the conjugate radius of M is equal to 7, then
M 1is isometric to the standard Riemannian sphere S™ of constant

sectional curvature one.

N \
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Santald’s

—_—~—

TM,

Let dV denote the symplectic volume form of the Sasaki metric on

Formula

dV(v) = /\de (gi;(v

Sﬁiluv

= (1)

N

= (p(v)) " dVy(v)dv(z)

We recall that the geodesic flow ¢; preserves dw and

4 {(¢¢)*(i*(dV))} = 0 (Liouville-Dazord’s theorem ’69). A proof of
Santalé’s formula in the Finsler case which only uses the fact the

geodesic flow is volume preserving .

v))dz A \/det(gi; (v))dy

1
—dw AN Ndw.
\3\_f ~ —

n-times

\
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Let (£2,00) be a compact domain in M and for any v € SQ,
T7(v) ;= sup{7T > 0:v,(t) € Q,t € (0,7)},

ST :={ve SQ:¢"(v,v) >0o0n z=m(v) € 0N}

with measure (p(v))~'dV,(v)da(zx), where da denotes the induced
measure on Jf).

Santald’s formula

For all integrable function f on S{)! we have

SQ

N

~

fav = \,ﬁ%ﬁ\o%vi??vx (¢¢(v))) " 9" (v, S&T:\A Jda(z)|

\

19
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o understand the geometric meaning of the mean tangent

curvature, we consider another volume form du on TM defined by

dp(v) == o?(z)dz A dy = p*(v)dV (v).

Proposition, Shen 99

For the volume form dy on SM defined above, we have

M A@L* A&t?vvw = 2H (¢¢(v))dp (@ (v)).

Hence if H = 0, then the measure du invariant under the geodesic
flow @w.

In the case of Finsler metric with vanishing mean tangent

curvature, we obtain a simpler form of Santalé’s formula with

respect to dpu.

N \
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Rmsnm_@wm formula /

Let 7, SQ, f, du be as above. If the mean tangent curvature

vanishes on {2, then we obtain

\% Jan= \miﬁ%\ois f(¢¢(v))g" (v, N\E*&:a?v%@v.

Let €2 be a compact differentiable manifold. Then the Riemannian
relation vol(SQ) = a(n — 1) - vol(€2) breaks down in the Finsler
case. However, the volume of the unit tangent bundle S€2 with
respect to du is given by

vol, (SQ) n\ A\,S %&STQQ — a(n—1) - volp(Q).

Q
Thus we have the following.

Lemma. Let €2, 5Q2 and du be as above. Then we have

/ vol,(SQ) = a(n — 1) - volp(£2). \
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Theorem [Yim and K ’00]

Let (V, Fy) be a Minkowski space and F' any other Finsler metric
with vanishing mean tangent curvature on V that has no conjugate
points and agrees Fy outside a compact set K. Then (V, F) is
isometric to (V, Fp).

(sketch of proof) First we adapt Croke’s argument to obtain
dr = dp, on 0K x OK in the Finslerian setting.

We may assume that the compact set K is contained in the interior
of the cube C' = {(x1,22, -, xy) : |z;| < R,i=1,2,--- ,n} for

some R.
By Santald’s formula, we obtain volg(C') = volg, (C) = (2R)™.

Let N be the face of C' given by x,, = —R and for each x € N let
(s) : [0,2R] — V be the geodesic on F' from x = +,(0)

\ Y,
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perpendicular to N, i.e., v = v. Then

volp(C) = \Z\owm det(B,(s))dsda.

For any positive function det(B,(s)) the Holder inequality implies
volp(C) > \ (2R)(+D/2(2R)~ (=172,
N
= wm\ da = 2R(2R)" ! = (2R)"
N

with equality holding if and only if B,(s) is the identity matrix for
all v and s. But we know that equality holds, hence B, (s) is the
identity. Thus we have the flag curvature along ~, is constant zero,

and by the same as the technical proof of Zadeh, we conclude that

the Finsler metric F' is the Minkowski metric.

N \
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As a direct consequence of above theorem and the
Cartan-Hadamard theorem, we have:

Corollary

Any complete Finsler metric with nonpositive flag curvature on a
vector space which has vanishing mean tangent curvature and is
isometric to the Minkowski metric outside a compact set must be

isometric to the Minkowski metric.

Remark

Croke used the convexity of distance functions to extended his
result to simply connected manifolds. However a Finsler manifold
does not have the distance of convexity, we can not directly the

above theorem as in Riemannian case.

N

~

\

24
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4. A summary of the main points

One of the important problem in Finsler geometry is to classify all
Finsler spaces of constant flag curvature. In this talk we are
understood the geometric meaning of the mean tangent curvature
and shown that a reversible Finsler metric with positive constant
flag curvature and vanishing mean tangent curvature must be
Riemannian. For a Euclidean space or a Minkowski space, we
change the metric in a compact subset and show that the resulting
Finsler manifold is isometric to the original standard space under
certain conditions. We assume that the mean tangent curvature
vanishes and the metric satisfies some curvature conditions or have

no conjugate points.

N \
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