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AIMS OF THE TALK:

Illustrate:

— how Finsler metrics appear naturally in Complex
Analysis as tools in function theory and in classifi-
cation problems;

— some results to show how Finsler geometry may
be of use (when not otherwise stated joint work with
Marco Abate);

— an important special example: Teichmiiller spaces
emphasizing the role of the curvature and trying to
show how it is important to develop Finsler geometry
under weak assumptions of regularity




Uniformization of Riemann Surfaces:
M Riemann surface with II3 (M) = 0. Then

Function ‘ Potential | Differential
_ theory theory geometry
M ~ A|M carries M has M carries
noncostant Green compl metric
bound holo function of constant
functions | neg curvature
M ~ C |M non cmpct, | M has M carries
with no parabolic complete
noncostant potential flat
bound holo metric
_ functions
M ~P' M is M —{pt} ' M carries
compact has ' metric
parabolic | of constant
i potential pos curvature
M arbitray Riemann surface. Then
either M =A/T | Hyperbolic
or M =C/T =C,C", Torus Parabolic
or M =P! Elliptic




In higher dimension?

Much more to do:

- simply connected, complete Khaler manifold of con-
stant curvature are C* B" P" but

- not known if a simply connected, complete her-

mitian manifold of constant negative curvature is
Khaler

- almost no simply connected bounded domain in C"
is biholomorphic to B"

- no easy way to classify manifolds which carry bounded
holomorphic functions

- the potential theory of the highly non linear homo-
geneous Monge-Ampére equation

(80u)"™ =

replaces the potential theory of Laplace equation but
the results are much weaker

- classification is open question even for very special
classes of manifolds: algebraic, prOJectlve domains
with many symmetries.....




Intrinsic metrics, a useful tool:
M complex manifold p e M, v € TZ}’OM

Kobayashi (pseudo)metric:
kv (p;v) = inf{[¢] | Jp € Hol(A, M) : dpy(€) = v}
- In general it is an uppersemicontinuous Finsler

(pseudo)metric

- Kobayashi (pseudo)distance: defined by the inte-
grated lenght of x,;

Carathéodory (pseudo)metric:
Y (p;v) = sup{|dfy,(v)| | 3f € Hol(M,A) : f(p) =0}

- In general it is a continuous Finsler (pseudo)metric

Facts:
1. kA = 7aA = Poincaré metric.
2. Y < Kk for all M

3. Biholomorphisms are isometries for x;; and vy,
(”invariance”)

4. M is called (complete) hyperbolic if the Kobayashi
pseudodistance is a (complete) distance

5. VM, KM hermwhe ball (and its quo-
- tients). |

“esse utia 0y"
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1. Notations
- M complex manifold, p € M,
- T19M its holomorphic tangent bundle

- M = complement in 7 M of the Zero section.

coordinates (2',...,2z™) for M
Y
coordinates (z!,...,2z™,vl,...,v™) on T*°M
+

local frame {0; = %, .. .,8n,31 = 5%,...,3,,;} for T1OM

Derivatives for ¢ C* on an open set of THOM:

52 0% 524
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2. What is a complex Finsler Metric?

— F:TYM — RY is a complex Finsler metric if

F' is an upper semicontinuous function,
F(p;v) > 0V (p;v) € M,
F(p;Cv) = [C{IF(p;v) Y (p;0) e TYM, V¢ € C

— F'is a smooth if

G = F?c C®(M)

— F' is a smooth strongly pseudoconvex if
(Gap(p;v)) >0V (pv) € M
)

all indicatrices Ir(p) = {v € T,°M | F(v) < 1}

are strongly pseudoconvex

Remark: G = F? hermitian iff G € O (Tl’OM )
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SN Complex Minkowski on C™

G:P,_1 — R of class ¢ with lifting ¢: C" — R
s.t.

7(z) = g(2)]|z||* is strictly plurisuharmonic on C™\ {0}

w(z,v) = /7(v)

defines a smooth strongly pseudocvx complex Finsler
metric

wC* x C*~TH S Ry

with vanishing holomorphic curvature and such that
7 (= distance squared from 0) satisfies Monge-Ampere:

(80log 7)™ = 0.

S Snooth Kobayashi metric (Lempert ’81)
D c C" smooth bounded strictly convex domain

kp 1s a smooth strongly convex complex Finsler
metric with constant negative holomorphic curva-
ture, such that the distance §, from p € D satisfies
Monge-Ampere:

(00 log tanh 6,)" =0

(Pang ’95) Also the Kobayashi metric of strongly
pseudoconvex complete circular domains is smooth
in a neighborhood of 0




3. Complex Finsler Gymnastics

—Vertical Bundle: V — M defined by:

V= Kerdr — TWN 9%, Loy

\ v -

M —

oy
Local frame for V: {0y,...,0,}

radial vertical field: ¢: M — V defined by:
o :
o_~ ) — aaa
’ (U (92:O‘> v
Hermitian metric on V defined by F"
(W, Z) = G o5(p;0)W*ZP
for (p;v) € M e W, Z € Vi)

Main property: ¢: M — V is isometry:
G(p;v) = Gop(p; 0)v*” = (L(v),4(v))




It is defined
D:X(V) = X(TEM Q V)

Chern connection, with covariant derivative V.

The hqgjjzontial bundle H — M is defined by
H=KerX — Vx.=

”subbundle of vectors respect to which ¢ is parallel”

Then TYM =VoH
Computing Chern connection get frames {41, ..., 6, }
for H:

8y =08, —T%00 = 8, — (G™G.,) 0,

The horizontal map ©:V 3 8; — §; € H defines:
— horizontal radial vector field y = ©o1:V — H

— metric on THOM prescribing V1H and
(H,K)=(0"'(H),07Y(K)) VH,K eH,




Basic tool of Complex Finsler Geometry:

The Chern connection of this metric called Chern-
Finsler counection of F' (first discovered using local
considerations by Rund (1967)

General Philosophy: x translates problems on
T*OM in questions on H: deal with them using the
Chern-Finsler connection
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4. Curvature

'Following Kobayashi ('75):

The usual procedure in hermitian geometry asso-
ciates to the Chern-Finsler connection a curvature
operator

Qe X(N(TEM) @ NOM @ TOM)
with local expression
Q=0Q%®[dz" ® 0o +¥° ® 04

o a Y «
where 0% = dwﬁ wg AW
wg: connection forms

{dz*,4P}: frame dual to {64, s}

Definition. The holomorphic curvature of I along
v€E M is

Kr(v) = e (@ ((0), X)) X(0)

2

—= ————0, GaD \G17° ll—,B
(locally) [G(v)]2G (v) [G* (v)Gpip(v)] , 0T

B
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Theorem 4.1: For allp € M and v € Mp

Kp(v) = sup{K(¢"G)(0)}

where

¢ € Hol(A, M) with $(0) = p and ¢'(0) = \v, some
AeC”

K (¢*G)(0): Gauss curvature in 0 of $*G on the unit
disk A.

due to

...H.Wu 73 for hermitian metrics
....H Royden ’84, Abate-Patrizio 94

This expression for the holomorphic curvature makes
sense for uppersemicontinuous metrics usmg gener-
alized Laplacian

27
Au(¢) = 4liminf 1 {i/ u(C—H‘ew) df — w(C)}
21 Jo

r—0 7"2 T

idea sistematically used by Heins in the 60’s to study
Gaussian curvature of pseudohermitian metrics in-
stead of using supporting metrics
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5. Non regular metrics

Little is known. For instance (Abate-Patrizio ’93-
’96):

Notation: u, complete metric on A constant curva-
ture = —4a, for some a > 0.

Theorem 5.1: (Ahlfors’ Lemma) F complex Finsler
metric on a complex manifold M with with holo curv
< —4a, for some a > 0. Then

P F < g
for all holomorphic maps ¢: A — M.
Proof: Maximumess principle built in the curvature!

Corollary 5.2: M complex manifold with a (com-
plete) continuous complex Finsler metric F' with holo
curv < —4a , for some a > 0. Then M is ( complete)
hyperbolic.

Proof: May assume Kp < —4. d distance induced
by F' on M, w the Poincaré distance on A. Then
Ahlfors’ Lemma, yields

d(@(C1), 9(¢2)) < w(C1,¢2),

for all (1, (5 € A and holomorphic maps ¢p: A — M.
= the Kobayashi distance kps of M is bounded be-
low by d, and the assertion follows.
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Facts (B. Wong 77, Suzuki ’83):
- Holomorpyhic curvature Kobayashi metric > —4

- Holomorphhic curvature Carathéodory metric < —4

Naive question: If on M HOLCURV (Kobayashi)
= —4, do Kobayashi and Carathéodory metric agree?

Lempert '83: True for convex domains in C".

In general little is known:

Theorem 5.3: F' complex Finsler metric on a com-
plex manifold M. Then

F=krky<&

(1) HOLCURV(F) =< —4 and
(2) for all (p;v) € TH°M Jp € Hol(A, M) s.t.

©(0) = p and Ap'(0) = v with || = F(p;v)

(i.e o isometry at 0 for Poincaré metric of A and F').

Remark: (1) + (2) = ¢ is an isometry: ¢*F = the
Poincaré metric of A (Ahlfors’ lemma and Heins’
theorem).
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6. Kalerianity

Many notions of Kalerianity. Here 1s the most useful.
Torsion 6 of type (2,0) defined by
VxY - VyX =[X,Y]+0(X,Y)
The decomposition

VETYEM =VaeH 2 H

induces
pp6 horizontal part of 6
pyv 0 vertical part of 0
0 — pg6 — py0 mixed part of 0.

Proposition 6.1:

(i) pvl =0; |

(ii) mixed part 0—pg0 = 0< G = F? is a hermitian
metric;

(iii) # =0 < G = F? is a hermitian Kihler metric.

Definition. F' is Kahler if for all H € 'H

0(H,x)=0

15
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Remark. Other notions of Kéahlerianity:

- F' 1s weakly Kahler if for all H € 'H

O(H,x),x) =0

Fact: Kobayashi metric for a strongly convex do-
main is weakly Kahler |

- I’ 1s Rund-Kahler if for all H, K € 'H

9(H,K) =0

Metrics with this property are very easy to handle
but very few non hermitian examples.

Conjecture. The Kobayashi metric of a strongly
convex domain is Kahler.
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7. Geodesics

Identifying T1°M and TM as real vector bundles,
it makes sense to consider F' defined on TM.

WARNING: As indicatrix are not strongly convex
one cannot apply the theory of real Finsler metrics.

— Lenght of reg. curve o:[a,b] — M: L(o) = be(b(t))dt
A regular variation of o with fixed end poin‘zsz

¥ (—¢€,€) X a, 0] = M
such that

(3(0,t) = o(t) Vte€la,b,
Y(s,a) =0(a) e X(s,b) =0(b),Vs
os(t) = X(s,t) € una curva regolare, Vs

| (da—s@—)> = (C, >0,Vs.

N\

dt
If £5(s) = L(os) we have

Definition. A regular curve o:[a,b] — M is a
geodesic for F' if for all variations of o with fixed

end points
dls

—=(0) =0.
dS(/
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Computations of vaiation are based on “exchange of
order of derivation” (or better to brackets of vector
fields) == conditions on the torsion of connection.

Notation: If T' tangent to the curves o, U tangent
to the variation, T# and U¥ the horizontal lifts via,
horizontal field y.

Fact: If the metric F is weakly Kahler:

dls 1 b b b
d—S(()) :——C—ERG ] <U 7VTH+7“ET >(‘70 dt.

Thus o is a geodesic if and only if:
0=Vpu, 7a2T" =tociy 6% + T2, (6)5" = 0.

Consequence:

Theorem 7.1: If F' is a weakly Kahler Finsler met-
ric, then there exists a unique geodesic o: (—¢, ¢) — M
such that 0(0) = p and 6(0) = v for all p € M e
vel,M.

Remarks: No use of real convexity; notion of com-
plete complex Finsler metrics, Hopf-Rinow theorem
and minimizing distance in the small for geodesics.
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— Totally geodesic complex curves

Notation: R, = A (if¢ = —2),C (if¢c = 0), P; = CU{c0}
(if ¢ = 2) each with their constant curvature metric.

Definition. A map ¢ € Hol(R., M) for a complex
manifold M with a strongly pseudoconvex Finsler
metric F' is said c-geodesic complex curve if it maps
geodesics (parametrized by arc lenght) of R, in geodesics
(parametrized by arc lenght) of M.

Remark: Inspired to complex geodesic of invariant
metrics.

Theovem 7.2: Let F' be a complete strongly pseu-
doconvex Finsler metric on cpex manifold M. Then
Vp € M and Vv € Ty°M with F(v) = 1 there exists
a unique c- geodesw comp]ex curve ¢ € H OZ(RC, M)

con p(0) =p e ¢'(0) =

=
F' is weakly Kahler, Krp = 2c and VH

(QUH, X)x, x) = (Qx, x)H, x)-

Due to Abate-Patrizio (1992). A partial result is due
to Pang (1991) who also provided important ideas of
the proof.
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If F' not B is weakly Kéhler can prove just exis-
tence of infinitesimal isometry between R. and M.
Together with a version of Ahlfors Lemma, this shows
the following improvement of a result of Faran (1990):

Theovew 7.3: Let I' be a strongly pseudoconvex

Finsler metric on a complex manifold M. If Kp = —4
and VH

(QUH, X)x, x) = (Q06x)H, x)

then F' is the Kobayashi metric of M.
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8. Classification Theory

A strongly pseudoconvex complete Kahler Finsler
metric F: TYOM — R is called curvature symmet-
ricif VH € H | |

(QUH, )x, x) = Q06 x)H, x)- (8.1)

Positive curvature:

Theorem 8.1: M simply connected complex mani-
fold. If F' is complete Kahler-Finsler, curvature sym-
metric and has constant positive holomorphic curva-
ture 2¢ > 0, then (M, F') is biholomorphically iso-
metric to the projective space P"(C) endowed with
a multiple of the Fubini-Study metric.

Vanishing curvature:

Theorem 8.2: M simply connected complex mani-
fold. If F' If I is complete Kahler-Finsler, curvature
symmetric and has constant vanishing holomorphic
curvature, then (M, I') is biholomorphically isomet-
ric C™ endowed with a complex Minkowski metric.
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A technical assumption

The dual (1,1)-torsion:
TH0 M-valued form 0 € X(A\"'M @ TYOM) s.t.

0(X,Y), Z) = (X,0(2,Y))
forall X, Y, Z e TYOM.
f decomposes 0 = 0™ + V.

Fact 1: F is Kahler iff 0(H, ) = 0
Fact 2: F? is Hermitian iff 0V (y, K) =0 VK € H

Definition F' is tame if for all H € H
Hec,.séﬁ’c*)ﬁReKH, H) + {(H,H)] > (0" (x, H),0Y (x, H))

Note: this is only a punctual requirement on F' (i.e.,
it depends on the derivatives of F' along the v direc-
tions only, and not on derivatives along the z direc-
tions) and it implies strict convexity of F. But

Fact: g:C" — R be an Hermitian norm, f:C* — R™
any (1,1)-homogeneous function and € << 1. Then
G =g+ef is tame (1,1).
L.e s C—O'MQQQ),( Funlon “weat \f\CLUM’((OM o '\'QWQ,

Pt
.'1.7.



Negative curvature:

Theorem 8.3: M simply connected complex mani-
fold. If F'is complete Kahler-Finsler, curvature sym-
metric, tame and has constant negative holomorphic
curvature, then for any p € M:

—exp,: THOM — M is adiffeo in C (M)NC>® (M\{p
p-tp
— M \ {p} is foliated by isometric totally geodesic

holomorphic embeddings of the unit disk A through
p endowed with (a multiple of) the Poincaré metric

— F' is (a multiple of) the Kobayashi metric of M

If p is the distance from p, then o = (tanh p)? is an
exhaustion of M with the following properties:

(i) o € CO(M)NC=(M\ {p});

(ii) com e C (M) (m: M — M blow-up at p);
(iii) o is strictly plurisubharmonic on M \ {p};
(iv) (80logo)™ =0 on M \ {p} on M\ {p};

(v) logo(z) = log||z||* + O(1) with respect to any
coordinate system centered in p.

In particular M is a Stein manifold.



Theorem 8.4: M simply connected complex man-
ifold. F'is complete Kahler-Finsler, curvature sym-
metric, tame with constant negative holomorphic cur-
vature. Then:

—exp,: T, °M — M is of class C* on M) for some
peM

<~
— the foliation in isometric disks through p is holo-
morphic
R
“tanh ™ (F(v))
@(’U) = expp ( F(’U) [

defines a biholomorphism ®: I,(M) — M

Theorem 8.5: M simply connected complex man-
ifold. F' is complete Kahler-Finsler, curvature sym-
metric, tame with constant negative holomorphic cur-
vature. Then:

F' is Berwald in a neighborhood of some p € M
<~

(M, F) is isometrically biholomorphic to the unit
ball B" with (a multiple of) the Bergmann metric.
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A typical application:

Theorem 8.6: M, M, simply connected complex
manifolds with respectively complete Kahler-Finsler,
curvature symmetric, tame metrics Fy, Fy of con-
stant negative holomorphic curvature. Then a holo-
morphic map ®: My — M, is biholomorphic <=

® is an isometry at one point p € M
(i.e. Fi(p;v) = F2(2(p); d2(v)))
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9. Theichmiiller metric

H* C C upper half plane
M c L*®(H",C) the unit ball.

— Teichmiiller metric o: TYOM = M xL>®(H",C) — R

is the complex Finsler metric on M defined by

V|
1—|pf?

, (9.1)

oo

o) = |

where ||||o0 is the L™ norm and |v(2)]/(1—|p(2)|?) =
Poincaré length of the tangent vector v(z) at u(z) € A.

— Teichmiiller distance on M is integrated distance
d, of o:

M1 — (2
1 —pape

do(p1, ) = tanh ™ (9.2)

oo

— (M, d,) is a complete metric space.




G = Aut(H™") acts on M as a group of lin. isometries
via

(At = WZDE (g

V(A,pu) € G X M.

If I' C Aut(H") is a Fuchsian group (i.e. subgroup
acting properly discontinuously on H™), set.

L°T)={peL>H"C)|p=p* VAeT}.

The unit ball the closed subspace L*°(I')
M((T) =M n L) (9.4)
is the space of Beltrami differentiafs relative to I

40
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Teichmiiller metric o and distance d, on M(I") are
defined by restriction and M (I') is a complete Finsler
manifold.

Earle-Kra-Krushkal (’94), Abate-Patrizio (’97)4:

Proposition 9.1: Let I' be a Fuchsian group. Then
the Teichmiiller, Carathéodory and Kobayashi met-
rics (respectively, distances) of M(I') coincide. As a
consequence if p: A — M (I') is holomorphic then

@ Isometry at one point for Teichmiiller metric iff
@ isometry for Teichmiiller metric iff

¢ isometry at one point for Teichmiiller distance iff
w isometry for Teichmiiller distance

Simple proof as consequence of results due to Harris
(79) and Vesentini (81) or corollary of a theorem of
Dineen-Timoney-Vigué (85) (M(I") is a ball!).



H™: lower half plane in C
B: Banach space C Hol(H ™, C) with norm

ol = Sup{lz — Z|2|q5(z)| | z € IHI_} < o0. (9.5)

G = Aut(H") = Aut(H ™) acts on B as a group of
linear isometries via,

(4, ¢) = ¢™ = (0 A)(A"). (9.6)

If I' is a Fuchsian group,

B(T)={¢ e B|¢=0¢"}, (9.7)
is the subspace of I'-invariant functions of B.

For u € M there exists a unique quasiconformal
homeomorphism w* of the Riemann sphere in itself
which

— leaves 0, 1, oo fixed,
— w* is holomorphic on H™, N
— satisfies the Beltrami equation ws = pw,en .,

The map ®: M — B given by ®(u) = [w#] where
[w] = (W /w') — (1/2)(w” /w")? is the Schwarzian
derivative, is well-defined (Nehari’s theorem).
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Bers’ description of Teichmiller spaces:
— universal Teichmiiller space: T' = ®(M)
~Teichmiiller space of T': T(T') = ®(M(T)) C B(T)

Bers: Topological and holomorphic structures of 7'(I")
are quotient structure induced by &.

Teichmiiller metric Tr: T (") x B(I') — R is defined
using the quotient map :

() = inf{o(wv) | t = ®(n),d®,(v) = P}

Teichmiiller distance d,. (always complete):
drp (37 t) —

inf{d,(c, ) | @, 8 € M(T),s = &(a),t = B(8)}

I’_‘, M= A/T‘ %o cow/’;ox('} o,‘, feUuUD g
= T sa bd dowain in 23
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Royden (71) (and Gardiner in the infinite dimen-
sion):

Teichmiiller metric (and distance) = Kobayashi
metric (and distance)

Consequence: d,. is the integrated distance of 7r.

What about Carathéodory metric (and distance) on
Teichmiiller spaces?

Earle (74): Carathéodory metric is complete

Kra (81): Carathéodory and Kobayashi metric agree
in many direction.

Krushkal (81,...,85): Carathéodory and Kobayashi
metric are different on any 7'(I')!

31



Nice properties of finite dimens. Teichmuller spaces:

Proposition 9.2: Let T'(I') be a finite dimensional
Teichmiiller space. Then:

(i) the Teichmiiller distance §5(t) = d-.(s,t) from
a point s € T(I') is of class C* on T(T') \ {s}, and
the Kobayashi-Teichmiiller metric mr is of class C*
outside the zero section in T'(I') x B(I');

(ii) for every ¢ € B(I') =2 TH® (T(T")) one has

N\ . Os(s+hy)
() = %,133) \h|

(9.8)

(iii) Any two point in T'(I') are joined by a unique
geodesic of the Teichmiiller metric.

The regularity of the Kobayashi-Teichmiiller met-
ric is due to Royden (71) and presented in details
for instance in Gardiner (87). The derivatives of
the Kobayashi-Teichmiiller distance at a point are
computed explicitly in Gardiner (80) and Pang (94)
gives proof of (9.8) for any taut domain. Finally
(iii) is classical, and the uniqueness follows from ‘le-
ichmiuller uniqueness theorem.

Warning: here finite dimensionality is essential! In
infinite dimension no regularity (Li Zhong ’96), no
uniqueness (Tanigawa 92, Li Zhong '92).
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Teichmiiller spaces does not negative real curvature
and that they are not hyperbolic in any reasonable
real sense (Masur-Wolf (1995) for instance), but fi-
nite dimensional Teichmiuller spaces have a hyper-
bolic behavior. Reason: negativity of the holomor-
phic curvature of Kobayashi-Teichmiiller metric. Even
in the infinite dimensional case (Abate-Patrizio, '9§):

Theorem 9.3: Let I' be any Fuchsian group. Then

the holomorphic curvature of the Kobayashi-Teichmiiller

metric of T(I") is identically equal to —4. As a con-
sequence, T(I') is Kobayashi complete hyperbolic.
Furthermore

a holomorphic curve @p: A — M is an isometry at.
one point between the Poincaré metric on A and F
<= o is infinitesimal isometry at every point.

Solution of Royden infinitesimal disk conjecture (’86):

Teichmiiller disks (which are isometry at one point)
are both infinitesimal isometry and complex geodesics
curves.

Avalaible differential geometrical techniques do not
seem to be suitable to prove that infinitesimal isom-
etry are complex geodesics curves.
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By means of a lifting argument of holomorphic disks
on Teichmiiller spaces (essentially due to Slodkowski
'91), Earle-Kra-Krushkal '94 proved:

Theorem 9.4: Let I' be a Fuchsian group. Then
on T(T):

(i) Full Royden’s disk conjecture holds

(i) if T(I") is finite dimensional, through any point
(1] € T(T) and tangent vector ¢ € B(I') there is
a unique complex geodesic curve @: A — T(I') such
‘that ¢©(0) = [u] and ¢'(0) is a non-zero multiple of 9.

Kobayashi-Teichmiiller metric of finite dimen-
sional T(I') has exactly the same properties
concerning existence and uniqueness of com-
plex geodesics as Kobayashi-Carathéodory met-

ric of smooth strictly convex domains in C”
(Lempert 81).

Infact, even in infinite dimension:

Theorem 9.5: The indicatrices
Iy = {¢ € BO) = T, 0 T(L) | mw(¥) < 1}

of the Kobayashi-Teichmiiller metric Tr are convex
for every [u] € T(T).
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Inspired by Royden '71, after Graham-Wu 85, Vigue
'84’, Patrizio 86 and in particular using ideas of Gra-
ham ’89, (Abate-Patrizio):

Theorem 9.6: Let I' be a Fuchsian group so that
T(T') is finite dimensional. A taut connected com-
plex manifold N is biholomorphic to T'(I') iff there
exists a holomorphic map F: N — T(I') which is an
isometry for the Kobayashi metric at one point.

Other application (C. Castellano 2001):

Theorem 9.7: Let T'(I'y),T'(I'2) finite dimensional
Teichmiiller spaces and p € T(I'1),q € T'(I'z). A bi-
holomorphic map f:B(p, R) — B(q, R) of balls with
respect to the 'Teichmiiller distance with f(p) = ¢
estends to a biholomorphic map F:T(I'y) — T(I'2)
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9. Questions

Many natural questions in Complex Analysis need a
more "flexible” Finsler Geometry

For instance the following are interesting problems:

— Kra [Kra] has shown that along special complex
geodesics (the so-called abelian Teichmiller disks)
the Kobayashi and Carathéodory metrics agree. Is
there a geometric characterization of the Teichmuller
disks along which the Kobayashi and Carathéodory
metrics agree?

— Is there a quasiconformal-free proof of Krushkal’s
claim that Kobayashi and Carathéodory metrics of
Teichmiiller metric are different?

— Is it possible a geometric study to Teichmiuller met-
ric in infinite dimension?

General Problem 1: Develop the differential ge-
ometry of C' complex Finsler metrics.

General Problem 2: Develop the differential ge-
ometry of complex Finsler metrics in infinite dimen-
sion.
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Regularization:
M hyperbolic domain in C™, F' its Kobayashi metric,

I, = {v € C" = T,(M)|F,(v) < 1} indicatrix at
peM,

hp hermitian form on C" = T,,(M) such that

{v € C" = T,(M)|hy(v) < 1} is the ellipsoid of
minimum volume containinig I,

(Friz John: h, exists unique.)

Wu metric (’87): p — h, is CY hermitian metric
and 1t is "essentially” equivalent to Kobayashi met-

ric, 1n particular biholomorphically invariant

Remark: idea works also on manifolds and may be
applied to any Finsler metric.

— what are the regularity properties of Wu metric?
If Kob. metric is smooth, is Wu metric a least C17?

— what are the curvature properties of Wu metric?
If Kob. metric neg. curved, is Wu neg. curved?

Positive results in very spcial cases (Kim-Yu '96)
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