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1) How could we define with Professor Matsumoto
a new, special Finsler space, so-called Douglas
space which is a certain generalization of Berwald
space?

2) What kind of rule have the @-invariants in
the study of Douglas space” Here we obtain: A
Finsler space is a Douglas space if and only if the
()*-invariants depend only on position. From this
fact it follows that in a Douglas space the compo-
nents of Weyl tensor depend only on position, too.

3) How can we find a rectilinear coordinate sys-
tem in projectively flat Finsler spaces, in which the
equation of the geodesics reduces to d?z'/ds® = 0.

4) Finally, we would like to show three ” problems”
in projective Finsler geometry.




1. PROJECTIVE CHANGE

Let F™(M", L) be an n-dimensional Finsler space
where M™ is a connected differentiable manifold of
dimension n and L(z,y)!, where ' = &* = dz*/dt,
is the fundamental function defined on the manifold
TM\O of non-zero tangent vectors. The system of
differential equation for geodesic curves z' = z(s)
of F™ with respect to the canonical parameter s (s
is the arc-length of the curvature) is given by

d?z’
1.1
(1) ds?

G" is defined by

+2G(z,y) = 0.

(12) 26" = g((Bads L2y’ — Bul?),

where g;; = %@@Lz (0 = 8/8y) is the fundamental
metric tensor.

Remark 1. The Berwald connection coef-
ficients G(z,y), Gj.(z,y) can be derived from
the function G', namely G;- = 0,G"; Gé-k = &ng-.
The Berwald covariant derivative with re-
spect to Berwald connection can be written as

(1.3) j;kzaﬁ/axk--éaﬁ ?Jr@ngk_Té ?k



If the geodesic is written locally as ' = z*(t) for an
arbitrary parameter ¢, then the equation of geodesics
are written in the form

d*z’ dzx dx’
T + 26 (2, —) = ()=

where (t) = (ds?/dt?)(ds/dt).

Now, we want to give the notion of the projective
relation between two Finsler spaces F” and F. We
consider two Finsler spaces F™ = (M™, L(z,y)) and

F, = (M", L(z,y)) on a common underlying mani-
fold M™.

(1.4)

Definition 1. If any geodesic of F;, coincides with
a geodesic of F', as a set of points and vice versa,
then the change L — L of the metric is called
projective and F" 1is said to be projective to
F"

Let C : a' = z'(t) be a curve of M™ which is a
geodesic of both F™ and F’,, as a set of points. Then
Cin (1.4) is in F™ and also in F'

d*z’ dz dx'

o +2G (a: E) = %(t) o

Thus, from (1.4) and (1.5) 2G ( ,fl—f) — 2G'(x, dt)

= (7 — )& = " and since this equation must hold for
any point z and any direction dx/dt, we have

(1.5)




Theorem 1.1. (Knebelman, 1927) A Finsler
space F" is projective to another Finsler space F"
if and only if there exists a (1)p — homogeneous
scalar field p(x,y) satisfying

(1.6) G (zx,y) = G'(z,y) + p(z,y)y'.

The scalar field p(x,y) is called the projective
factor of the projective change under consideration.



2. PROJECTIVE INVARIANTS

From (1.6) we obtain the following equations
(27) G =Gj+p+py' pj=0Op

(2.8) Gy = Gl + pi0i + Pr0} + Pjsys’; Pjk = Okp;

(2.9) Gy = Gl + piwy’ + pisd} + py6h, + puid;

Djkl = 3zpjk-
From the above equation we find that
(2.10) =Gy — 0Gy [(n +1)—

—(Gird} + Giio} + Grdt) /(n + 1)
where G = GY,, D; 1 are components of a tensor
field invariant under projective change. This D —
tensor is called the Douglas projective tensor
(Douglas, 1928).
The important special case of Finsler space is the
Berwald space, if the tensor G*; = 0.

Thus we obtain

Theorem 2.1. If a Finsler space is projective to a
Berwald space, then its Douglas tensor field van-
wshes identically.
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Further on we get an another invariant tensor W ;kl
called the Weyl curvature tensor, which we
can get from Berwald curvature tensor H]":kl, and the
Ricci-type Berwald curvature tensor HS, , = Hj

jka
(2.11)
Wi = Hijp + {65 Hp + y'On Hjp+
+5§-8th — (Ssz] — yié‘thj — 5;98hHJ}/(TL + 1)

Z. 1. Szabd’s theorem gave the geometrical meaning
of the Weyl tensor:

Theorem 2.2. (Z.1. Szabo, 1977) Finsler space
is of scalar curvature, if and only if the Weyl ten-
sor vanishes indentically.

Corollary 2.3. If a Finsler space F™ of scalar
curvature is projective to an another F insler space
F,, then F, is also of scalar curvature.

Definition 2. A Finsler space F™ is said to be of
scalar curvature if

(2.12) H}=h'H,
where b = 6% — Ul I' = y*'/L; |; = O;L, H =
H éﬂjyayﬂ

It means that the projective mapping (relation) is
closed for the Finsler space of scalar curvature.



Thus, there arises an interesting question:

”Which properties are satisfied by Finsler
spaces with vanishing Douglas tensor?”

The main purpose of the present lecture is to an-
swer this question in the two-dimension and the n-
dimension cases, which is based on four papers:
S. Bacs6o, M. Matsumoto, On Finsler spaces
of Douglas type I, II, IV, Publ. Math. De-
brecen, 51 (1997),385 — 406, 53(1998),423 — 438,
56(2000), 213 — 221.
S. Bacsé, M. Matsumoto, On Finsler spaces
of Douglas type 111, Kluwer Academic Pub-
lishers, 2000, 89 — 94.

The notion of the locally Minkowski space is very
important for us:

Definition 3. A Finsler space with a fundamen-
tal function L(x,y) is called locally Minkowskst,
if there exists a coordinate system () in which
L(z,y) is a function of y* only. Such a coordinate
system (z*) is called adapted.

Definition 4. A Finsler space is called projec-
tively flat, if it has a covering by coordinate
neighbourhoods in which it is projective to a lo-
cally Minkowski space.

Theorem 2.4. The Douglas tensor D and the
Weyl tensor W vanish identically in a projectively
flat Finsler space.



3. FINSLER SPACES OF DOUGLAS TYPE

Definition 5. A Finsler space is said to be of
Dowuglas type or a Douglas space, if DY =
G' — G’y are homogeneous polinomials in (y*)
of degree three.

We are concerned with a two-dimensional Finsler
space F'? with a local coordinate system (z',z?) =
(z,y) and we put (y!,y%) = (p,q). Let us take z as
a parameter of curves and use the notation as follows
y = dy/dz, and 3" = d*y/dz*.

Theorem 3.1. A two-dimensional Finsler space
is a Douglas space if and only if in a local coor-
dinate system (x,y), the right-hand side of
f(z,y,y") of the equation of geodesics

y' = f(z,y,v') is a polynomial in y of degree at
most three.

We treat a Finsler space F" with the Berwald con-
nection Br = (G}, Gj). F™ is by definition a Dou-
glas space if and only if

(3.13) 040;0,00(G'y™ — G™y") = 0.

After some calculations and considerations from
(3.13) we get that the Douglas tensor vanishes iden-
tically, and conversely, if the Douglas tensor of an
F™ vanishes identically, then F™ is a Douglas space.
Therefore we can state the following theorem.
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Theorem 3.2. A Finsler space is of Douglas type
if and only if the Douglas tensor vanishes identi-
cally.

Definition 6. A Finsler space is called a Lands-
berg space if the condition yoG7,; = 0 holds.

Theorem 3.3. If a Finsler space F" (n > 2) is
a Landsberg space and a Douglas space, then it is
a Berwald space. Conversely, a Berwald space is
a Landsberg space and a Douglas space.

The Douglas tensor is projective invariant. Hence
the following theorem is true.

Theorem 3.4. If a Finsler space is projectively
related to a Douglas space then it is also a Dou-
glas space.

Example 1. The family of solutions of a second
order linear differential equation

(3.14) y" + P(z)y + Q(z)y = R(x)

coincides with the family of geodesics of the two-
dimensional Finsler space F? with the metric

(3.15)
L(z,y,p,q) = %exp( / Pdz)[(2R — Qy)yp’ + ¢°).

Consequently, this F? is a Douglas space.
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Example 2. Let the second order differential
equation y" = (y')? + 1 be given. The solution of
this equation: y = c¢; — log|cos(z + cg)| (¢; and
¢y are arbitrary constants) are the geodesics of
a two-dimensional Finsler space F#2with metric
function

(3.16)

L(z,y,p,q) = qtan™ % —plog/1+ (5)2 — zq.

It is easy to show that this F? is certainly not a
Berwald space, however, we have 2(G'q— G?p) =
p(p? + ¢%), which implies again that F is a Douglas
space.

Example 3. Consider a Finsler space

F" = (M", L(a, B)) with (o, 8)-metric where

a? = a;;(z)y'y’ is a Riemannian metric and =
bi(z)y* is a one-form. The Riemannianian space
R" = (M",a) is said to associate with F". The
Randers metric L = o+ 8 and the

Kropina metric L = %2 have played a central

rule in the theory of (a, B)-metrics. In R" we
have the Christoffel symbols v}, (z) and the covari-

ant derivation (,) with respect to ... We shall
use the symbols as follows:
Tij = %(bi,j+bj,i); 8ij = %( i —b; ,,), s; = q Sa],

8j = bas¥; b? = a®Pb,bg; si; = (0;b; — 0;b;)/2.
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Theorem 3.5. A Randers space is of Douglas
type if and only if s;; = 0, that is, 8 is a closed
form.

Theorem 3.6. A Kropina space F™ (n > 2) with
b2 £ 0 is of Douglas type if and only if
1
(3.17) Sij — ﬁ(bisj - bjsi)
is satisfied.

Theorem 3.7. All two-dimensional Kropina
spaces are Douglas spaces.
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4. Q-INVARIANTS

A Finsler space F™ is said to be projectively related
or projective to another Finsler space F,,, if any ge-
odesic of F™ is a geodesic of F',, and vica-versa. The
condition under which it holds is written in the fol-
lowing form:

(4.18) G =G +py,
where p = p(z,y) is scalar function.

The change F" — F" is called projective. From
(4.18) we have

(4.19) G, = G+ py" + pd?; pi = Oip,
—h .
(4.20) G;; = G+ piy" + pi6t + p;6Y; pij = ;.

If we take G = G¥, then (4.18) and (4.19) give
G=G+(n+1)p,

—h G G
421 G — h=Gh - h
(4.21) -+ 1y n -+ 1y
which gives rise to a projective @’-invariant
G
4.2 h=Gh— ——y" G =G

Taking Q" = 8;Q" and QZ’-LJ- = 3]-@?, which are the
@!-invariant and @?-invariant, respectively, we
have

1
423) Qh=Gh — ——
( ) ] oo

— 1(Gijy’ur Go6" 4+ G2 .01).

at”j ajvi
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Finally, we get a remarkable expression of the Dou-
glas tensor as follows:

(4.24) 0x0;0,Q" = DI,
It follows from (4.24) that
Theorem 4.1. A Finsler space is of Douglas type

if and only if 'Qh of (4.22) are homogeneous poly-
nomials in (y*) of degree two.

Let F™ be a Douglas space. Then Q?j of (4.23) are
functions of position () alone and we may take

2

4.95 by = 2Gh —
(4.25) b)Yy 1

G h

which implies
(4.26) 2D"™ = (Q}i(2)y'y')y" — (Qf(=)y'y )y".
Theorem 4.2. For a Douglas space, D" =
= .Ghyk — G*y" are homogeneous polynomials in
(y') of degree three as written in the form (4.26).
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In particular, for a two-dimensional Douglas space,
the equation of geodesics
y" = f(z,y,y) is written

@27) ¥ =A(z,y)y)’ + Bz, y)y)+

Clz,y)(y) + D(z,y),
where A(z, y) G22: B(z,y) = 2G}, — G3;
C(z,y) = Gi; — 2Giy; D(z,y) = _G11-
It is more convement to write it in the following
form

(4.28) y' = Q) + (2Q1, — Q%))+
(Q%l - 2@%2)3/

Since the QQ-invariants QZ(x) will play various es-
sentiall rules in the theory of Douglas spaces, we give
the following definition.

Definition 7. The set {Q%(z)} is called the char-

acteristic of Douglas space. From Q*-invariants
we obtain the following Q*-invariants in the
Douglas space

(4 29) z]k( ) 816@ Q gk_anzhk_QzQ;c

From (4.29) we get the following 7-tensor which is
invariant under projective relation

(4.30)  mh(z) = QZ/HF (5th/§ 011, Qis)-
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Theorem 4.3. The Weyl tensor W coincides
with the w-tensor the components of which are
written in terms of Q3-invariants as in (4.29),

where Qij = Q-

Theorem 4.4. For a Douglas space the compo-

nents of the Weyl tensor are functions of posi-
tions alone.

From Q3-invariants we can define the following ten-
sor

(431) ﬂ'ijk(iE) = a]gQij - %Qak - anzk + Q%Qaj
which is also invariant under projective relation.
Consequently, by equation (4.24) and (4.30) we can

state that both projective invariant tensor, the Dou-

glas tensor and Weyl tensor are obtained from the
invariants @)'. In a Douglas space (% are functions
of the position (z*) alone, and so is the Weyl tensor.
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5. RECTILINEAR COORDINATE SYSTEM

If a Finsler space F" = (M™, L(z,y) is locally
Minkowski space, then we have a covering of
M™ by the domains of adapted coordinate sys-
tems (U, (z')) in which L in a function of 3" alone,
the quantities G* vanish in U and the equation of
geodesics reduces to d?z'/ds* = 0. Therefore, any
geodesic is given by n linear equation z° = x, + sv}
on the arc—length s with 2n constants z}, and v".
Defl g,
gl 5.1. A Finsler space F" = (M",
L(z,y)) z's said to be equipped with rectilinear
extremals, if M™ is covered by coordinate neigh-
borhood (U, (z")) in which any geodeszc i8 repre-
sented by n linear equations =* = x} + ta' of a
parameter t, or n — 1 linearly zndependent linear
equations a®(z' — z4) =0, a =1,2,..,n — L.

Therefore, a locally Minkowski space is with recti-
linear extremals, and if F™ is projective to a locally
Minkowski space F'' (G = 0), then any geodesic is
represented in an adapted coordinate system (U, z*)
of F" by ' = z}, + 500 as above, so that F™ is with
rectilinear extremals. This (U, ') coordinate system
is said to be a rectilinear coordinate system in F™.

Theorem 5.2. A Finsler space is equipped with
rectilinear extremals if and only if it is projec-
tively flat.
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Let us consider a projectively flat space F™. As it
has been mentioned, F™ has a covering by rectilinear
coordinate neighbourhoods in which there exists a
function p(z,y) satisfying G* = py*, that is, D¥ =
Gy’ — G'y*. Consequently, F™ is a kind of Douglas
space. From G* = py® we obtain Q" = 0, conversely

Q" = 0 leads to G = Gyh/ (n + 1). Therefore we
have

Theorem 5.3. A projectively flat Finsler space
15 a Douglas space.

A coordinate system (z') of a projectively flat space
is rectilinear if and only if the characteristic Q" van-
ishes identically in (z*).

Theorem 5.4. A rectilinear coordinate system T°
of a projectively flat space is obtained from any
coordinate system (z') by the differential equa-
tions

=-a

(5.32) 07" = X,

(5.33) 0;X; = Q¥ X, + VX, + V;X;
(65:34)  0)Y; =YY, + QY+ Qi/(n - 1),

a

O X ;

j

w}_L_e_Te Y, = ﬁ_-lk_l—X—;rXL Xﬁz = axi/afa7 ij =
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Therefore we obtain the complete system of differ-
ential equations (5.32), (5.33), (5.34) for the func-
tions (Z% X;,Y;). This system is completely inte-
grable if and only if the tensors ijk and ;1 van-
ish identically. Thus, we obtain a set of solution
(Z%, X;,Y;), and we can show that (Z%) is certainly
a rectilinear coordinate system.

In the case n > 2, W'Zk = 0 leads to m;x = 0, in
the case n = 2 ijk = ( is only an identity.

Summarizing all the above mentioned facts, we can
state the following theorem.

Theorem 5.5. A Finsler space is projectively flat
if and only if F™ is Douglas space and its charac-
teristic satisfies:

()n > 2: wf‘j =

(2)n = 2: mjr = 0, and a rectilinear coordi-
nate system xT® is obtained by solving the system
of differential equations (5.32), (5.33), (5.34).

Example 1. Assume that a two-dimensional
Finsler space F? in a domain of the (z,y)-plane
if the geodesic given by the equation y" = f(z,y)
where iy is not contained. Then w19 = —0,0,f,
ma12 = 0. Consequently F? is projectively flat
if and only if f(x,y) is linear in y, f(z,y) =
A(x)y + B(z), that is, there exists a rectilinear
coordinate system (T,y) in F?, where the equa-
tion of geodesics is §"' = 0.
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6. THREE EXAMPLES FOR PROJECTIVELY FLAT
FINSLER SPACES

We have a remarkable interesting two
(a, B)-metrics, one is the Randers metric L = o +
B) and the other is the Kropina metric L = o?//)
where o = a;;(z)y'y’ and 8 = b;(x)y’. A Randers
space is a Finsler space with the Randers metric, and
a Kropina space is a Finsler space with the Kropina
metric.

Example 1.

Theorem 6.1. (Matsumoto, 1991) A Randers
space 1s projectively flat if and only if its asso-
ciated Riemannianian space with the metric a is
projectively flat and the change o« — a+ 3 s pro-
Jective.

Example 2.

Theorem 6.2. A Kropina space of dimension

n > 2 s projectively flat, if and only if s;; =
glg(biSj —bjsz-) and ijkﬁ-Kﬁjk-f—((sj}-bKik—(SZKZ'J')/(R—
1) = 0, where w° is the Weyl tensor of the asso-
ciate Riemannianian space and

h o gk agch _ ph g pch .
K = K + KRG, — K — KK,

Kz'hj: h _Qoh. Kij:K'a

1] 1 7 ja”
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Example 3. Now we consider the n dimensional
Berwald spaces B(n) and the n-dimensional pro-
jectively flat Finsler spaces P(n).

What is B(n)() P(n)?

Theorem 6.3. A Finsler space F" is projectively
flat Berwald space if and only if it belongs to one
of the following classes

(1)n >3

a) locally Minkowski spaces,

b) Riemannian spaces of constant curvature,

(2)n=2

a) locally Minkowski spaces,

b) Riemannian spaces of constant curvature,

c) spaces F? with L = 3%/, where 8 and 7y are
1-forms.
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7. THREE QUESTIONS IN PROJECTIVE FINSLER
GEOMETRY

[.W. Roxburgh and his collaborators have studied
Finsler spaces which are projective to Riemannian
as for the theory of a space time and gravitation
(General Relativity and Gravitation 18 (1986), 849-
859; 23(1991), 1071-1080).

From this researches we can formulate the following
first problem:

”Determine all the Finsler spaces which
have common geodesics with some
Riemannian space, that is, determine all
the Finsler spaces projective to a Riemann-
ian space”. (S. Bacso, 1993).

Hence, if F™ is projective to a Berwald space, then
F™ is of Douglas type. Thus, denoting by D(n) the
set of all n-dimensional Douglas spaces and by pB(n)
the set of all Finsler spaces which are projective to a
Berwald space, we have the important subset pB(n)
of D(n). If we denote by pR(n) the set of all n-
dimensional Finsler spaces which are projective to
a Riemannian space then we have the relation as
follows: pR(n) C pB(n) C D(n).

From Szab6 ’s result, which stated that any
Berwald connection is Riemannian metrizable,
pR(n) = pB(n) follows for a positive definite Finsler
metric. |



23

The second problem is as follows:

”To find the tensorial characterisation of
projectivity to Berwald spaces pB(n)” (M.
Matsumoto, 1998).

Thus the third problem which is a consequence
of the second problem became important:

”Is there any Douglas space which is not
projective to Berwald spaces(pB(n) = D(n)?)
(Z. Shen, 2000).

Finally, we give a Douglas space (which is not
Berwald) and a Berwald space which have not com-
mon geodesics. Let us consider a Randers metric L =
a + (3, which is a Douglas metric and not Berwald
metric (then s;; = 0 and b;; # 0), and a Kropina
metric L = o+ (3, which is a Berwald space (then r;;
is proportional to a;j, that is, 7;; = u(z)a;; for some
u(z), and sy = (bis; — bjs;)/b* (& = ai;(2)y'y’,
B = b;(x)y"). Hence, the equations

(735) bi,j — bj,z' =0
bi;j +bj; = 2u(z)ay;
bi,j — bm‘ = %(Sibj — Sjbi)
are realized at the same time.
By this equation we obtain
(7.36) bm‘ = ’U,(LE)CLZ']‘

The equation (7.36) is completely integrable equa-
tion in a Rieman space of nonzero-constant curva-
ture. Then u(x) # 0.
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So we obtain two Finsler spaces: a Randers
space " = (M" L = a + ) of Douglas type
(which is not Berwald), and a Kropina space
F" = (M", L = o®/B) of Berwald type, which
are induced by the same Riemannianian metric «,
and a one-form J.

It is known that a Randers space F" = (M™, L =
a + () is projective to a Kropina space F™ = (M™,
L = o’ + f), then b;; = 0 independently of the
dimension n. |

By (7.36) we have b;; # 0in F™ and F, so the
Douglas-Randers space F™ given above is not pro-
jective to the Berwald-Kropina space F .



