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° — holonomy groups in Riemannian geometry

e — Finsler metrics

® — connections in Finsler geometry

e — holonomy of homogeneous connections

e — mixed holonomy of the Finsler vector bundle

e — special Finsler spaces: Minkowski, Berwald, LLandsberg spaces



Holonomy groups in Riemannian geometry -

M™ :  connected and simply connected n-manifold
g . Riemannian metric on M

parallel transport along curves:

for each (piecewise C1) curve ~: [0,1] — M, there is associated
a linear mapping Py : 7(0)M — ;y(l)M

an isometry of vector spaces

Py = P71 and Py,y, = Py, 0 Py, where ¥ is the path defined by

v(t) = 7(1 —1) "

and ~-»v7 is defined only when v1(1) = v2(0) : ‘ Ve
) 1 L
~v1(2t) for0<t< —
Y271 () = 4 1 2" |,



The holonomy group H, : for any x € M, the set of linear
transformations of the form P, where v(0) = ~(1) = «z is a
subgroup Hy C O(TzM)

for any other point y € M, we have Hy = PyHgz Py

where ~ : [0,1] — M satisfies v(0) =z and (1) = y.

M is simply connected : H; is connected and hence is a closed
Lie subgroup of SO(T,M).

Ambrose-Palais theorem: The holonomy algebra b, is spanned
by all elements of the form P,10 R(P,(u), Po(v)) involving the
curvature mappings Ry for all vectors fields v and v and the
parallel translations P, along curves ¢, ¢(0) = .



De Rham Theorem: if there is a splitting 1T, M = V7 & V> which
remains invariant under all the action of H;, then the metric g
is locally a product metric in the following sense:

The metric g can be written as a sum of the form g = g1 + g7
in such a way that, for every point y € M there exists a neigh-
borhood U of y, a coordinate chart (z1,z5) : U — R% x R%, and
metrics g; on R% so that g; = z¥(g;).

In the reducible case the holonomy group H; is a direct product
of the form Hl x HZ where H. C SO(V;).

For each of the factor groups HZ, there is a submanifold M, C
M so that TpM; = V; and so that H? is the holonomy of the
Riemannian metric g; on M;.



Theorem. (Berger, 1955) Suppose that g is a Riemannian metric
on a connected and simply connected n-manifold M and that the
holonomy H, acts irreducibly on T, M for some (and hence every)
x € M. Then either (M,gq) is locally isometric to an irreducible
Riemannian symmetric space or else there is an isometry v :
ToM — R™ so that H = 1Hz.~ ! is one of the subgroups of SO(n)
in the following table.

Subgroup Conditions Geometrical Type
SO(n) any n generic metric
U(m) n=2m> 2 Kahler
SU(m) n=2m > 2 Ricci-flat Kahler
Sp(m)Sp(1) | n = 4m > 4 | Quaternionic Kahler
Sp(m) n=4m > 4 Hyperkahler
Go = { Associative
Spin(7) n = 8 Cayley




In Finsler geometry, the notion of holonomy admits to introduce
several types of holonomy groups at different levels. It is not
clear yet what the most adequate is. A detailed study on the
holonomy group of homogeneous connection is given Barthel,
and in other aspects by Okada. These are, however, not linear
groups. A strong result is given by Grangier for the reducibility
of the mixed holonomy group.



The notion of a Finsler metric
Approach I: Vpe M L, : T,M — Rt norm

e Lp(u) >0 =0<«—=u=0 _
Lp(A(w)) = ALp(u) A > 0 positively homogeneous
Ly(u+v) < Lp(u) + Lp(v)  convexity

L:TM — Rt is of class C?

L:TM\ {0} — RT is of class C?

Lp(—u) = Lp(u) symmetrical/ reversible

indicatrix: Ip = {u € TpM | Ly(u) = 1}



Approach II: variational problem

b
/ L(x(t),z(t))dt — Euler-Lagrange equations

’ 1 positively homogenous

Riemannian case: L(z,&) = /g;j(z)i'd

Finslerian case: (z,y) 1 9°L
. g;qil, = ——
9ij Yy 2 80y

Approach III: d: M x M — RT is a metric
v € TpM;c:[0,1] = M with ¢(0) =p, ¢(0) =wv

L) = Jim 42



A function L: TM — R is called a Finsler fundamental function
in a tangent bundle 7, if

1. L(u) >0 Vu e TM, u#0

2. L(Ow) = AL(w) VAE Rt ueTM

3. L is smooth except on the zero section

82(1/2L2)

Dit0 (z,y) is positive definite for (x,y) # 0.
Yy oy

4. g;i(x,y) =



The last assumption implies that the indicatrix

Li={zeT:M=r"1(z) | L()=1}

~

at each point x € M is convex. The indicatrix bundle Jr, =
(ITM,7, M,S™ 1) of a Finslerian tangent bundle (73, L) is formed
with the indicatrices I, as fibres.

Roughly speaking, a Finsler fundamental function L, at p € M
gives a norm in the tangent space Tp,M. Thus a Finsler space
(M, L) is a manifold M endowed with a Finsler fundamental func-
tion L.



Example 1: Funk metric
€2 C R™ strictly convex

zZ—Dp
d(p,q) = |ﬂ| |

|z — q

Yy
+ —— € 902
PT I

B o 1y = VWP (lpl2lyll2 . <|12:, v + (7 y)
— P

— projectively flat

— constant negative curvature —1
— non—reversible

— Randers metric

Example 2: Hilbert metric
- 1
d(p,q) = —Q—(d(p, q) +d(q,p)) =

" (Iz—pl : Iv—pl>|
1z —q| |v—q|

1
2



Example 3: slope metric with time measure
surface in R3: 23 = f(al,22)

standard Riemannian metric:

a(z,y) = /()2 + 422 + (B1fy! + 02fy2)?
horizontal speed vg; v = vg(1l —acosw)

2

T2 o)
T = / dt
1 voo — af

a?(z,y)
’UQOZ(LU, y) T aﬂ(:c, y)

L(z,y) =



Example 4: Katok's example (1973), W. Ziller (1982):
Randers space

S2: standard Riemannian metric «

¢d;: one parameter group of rotations
leaving the north & south poles invariant
X: Killing vector field

B Killing form

Le(z,y) = alz,y) + 6(z,y)

Theorem: For any irrational € a curve v is a closed geodesic of
L. if and only if v is a closed geodesic of o and invariant with

respect to &;.

Properties:
2m 2m

— the length of the two closed geodesics: ;
14+ 1-—c¢

— L¢ is a Finsler metric <= |g] < 1



The bundles

v = (T'M, M, ) denotes the tangent bundle, a base manifold M,
a total space TM (2n dimensional), and a projection «w: TM — M.
SecTys denotes the set of all differentiable sections of 1.

V2T'M is the kernel of (dm).: T:TM — T ,yM. Then the verti-
cal bundle Vryy = (VI'M,TM,ry) is a subbundle of 7,7, and
isomorphic to n*(7py) = (T'M X TM,TM,pri1). The latter iso-
morphism is described as follows: ¢: n*(myy) = V1 e(z1,22) =
the tangent of the curve z1 4+ tzo at 0, where 21,20 € T'M with
the property n(z1) = 7(25).



By a connection of 7y we mean a splitting H: n*(7p7) = 7
of the next short exact sequence

—~——

O—)VTM—L>TTM51-7-;7T*(TM)—>O (1)

where dr: 7py — w*(ryy) is given by dr(A) = (wpa(A), dr(A))
for A€ TTM. H is also called a horizontal map, and its images

HZTM — ImH|{Z}XT7r(z)M

are the horizontal subspaces which are complementary to the
vertical subspaces: 7y = V1 © Hryy.

Let o: I — M a curve in the base space.

A vector field Y € X(M) is called parallel along ¢ if dY () are
horizontal vectors, where ¢ denotes the tangent curve of ¢. This
means that H(Y o p,¢) = dY ().



The parallel translation of z along ¢ is denoted by P,(t,z).

The covariant derivation V: X(M) x X(M) — X(M) is given as
VY = a(v(dY(X))) for all X € X(M),Y € X(M), where a =
pro o e 1: Vryr — e

Denote u;: TM — TM the multiplication by t € R in the fibres
of 1ps. It is said that a horizontal map satisfies the homogeneity
condition if

H(pi(z),v) = dut(H(z,v)) (2)

holds for all z €¢ TM, v € TM and t € R. If the differentiability of H
is not assumed at the zero vectors of rys, and H satisfies (2), we
speak of a homogeneous connection (nonlinear connection).
When H satisfies (2) and differentiable anywhere, then we get a
linear connection.



connection — parallel transport — covariant derivation
TTM,VTM,n},(Tar)

Berwald, Cartan, Chern—Rund, Barthel

geodesics — paths

(M,L);  L(z,y)

9ij = %@-@-LQ positive definite; Riemannian metric in VI'M
G' = Lg"*(y"8p0rL? — 0}, L?) ; geodesic parameter

G;'- = asz‘; — homogeneous (nonlinear) connection on M
G;'-k = 9;G%; — connection in VI M

(VT'M,g) — Riemannian metric

(VTM,VB, N) — Berwald connection pair



The pull back bundle n*(myy) = (T'M x5y TM,TM,prq) is called
now a Finsler vector bundie.

g;;(z,y) gives a Riemannian metric in the Finsler vector bundle.
Definition. A pair (VF,H) is called a Finsler pair connection
where V¥ is a linear connection of ©w*(r)s), and H is a homoge-
neous connection of T;.

On a Finsler manifold there are known several important Finsler
pair connection such as of Cartan, Berwald, Rund, etc.



The holonomy group for homogeneous connections is de-
fined as usual for linear connections: It is the group at the point
x generated by the parallel translations along all loops at x. This
is not a subgroup of the linear group but gives a subgroup of of
the group of all invertable positively homogeneous differentiable
map of the fibre. In general it is neither infinite dimensional
diffeomorphism group nor Lie group.

The holonomy groups of the homogeneous connection H,
denoted by G! at z € M:

Gh = {P,: TeM — TeM| ¢ : [0,1] = M, ¢(0) = (1) = =}
It was defined and investigated in details by W. Barthel (1963).



Gf{: is not a linear group except in the case of Berwald spaces,
however, it is a subgroup of the locally Banach topological group
B, consisting of positively homogeneous bijective C°° mappings
on TM \ {0}.

By ={®:TpM — T;xM | P is pos.hom.: ®(A\v) = AP(v), A > 0}

For a Finsler manifold (M, L) the parallel translation of the
Barthel homogeneous connection N preserves the length of vec-
tors, i.e. the homogeneous holonomy group G is a subgroup of
the norm-preserving positively homogeneous transformations

{T: TyM — TyM | pos.hom., LoT =L, C®onT;M \ {0}}



Holonomy algebra

A B:T,M — T,M positively homogeneous mappings

Lie bracket: [A, B](v) = dBy(A(v)) — dAy(B(v))

covariant derivative:

For A; : [0,1] — End(T:M) (1,1)-tensor field along a curve > 7t
Vi, At 0 [0, 1] — End(T; M) is defined as:

V5, At (Xe) = (dAy) x, (1) + A(V;, X2)

Let 1) = T4(Gh) € Bx(TxM), and for k > 1: T = 7{"),
Then

gh = U 1"(k)

is called the holonomy algebra of the homogeneous connection.

The curvature: R(U,V)Z =VyVyZ —VyVyZ = VigyZ.
Then for u,v € TpM: Ryy € t(z).



Theorem. (Barthel, 1963)
For an arbitrary wyi,uo,--- € TpM let us construct the mappings

W u  TeM = TyM

by induction:
2
a) hi3u, = R(u1,up)
b) k£ > 2. Consider X1(t),...,X,_1(t) parallel vector fields along
~(t) with X71(0) = uq,...,X;_1(t) =wui_q1. Let

(k—1)

(k)
h = VX (1), X (0|60

Ug,...,u

Then the vector space t, spanned by all mapp/ngs h(k’) Luy gives
a Lie subalgebra of the holonomy algebra gx.



We define the notion of hAv-holonomy dgroups of the linear
Finsler pair connection (V¥ H):

Consider a loop ¢ at £ € M and its horizontal lift ¢ starting from
z€TM: wovy = ¢, Y(0) = z. 1 is not necessarily a loop, but
the endpoints are in the same fibre. Join (1) and ¥(0) with a
vertical straight line 7 in TuM. The parallel translations of V¥
along composite loops ¢ 1 generate the hv-holonomy group G’;’“
at z € T'M.

GI* = {P} o P} |¥r,4 above},
G c G

AR

and is a linear group C GI(n).



Note that Diaz and Grangier (1976) gave a similar notion of
holonomy group G7*, called as mixed holonomy group. He
used the Cartan connection and there the second part of par-
allel translation was substituted by the canonical isomorphism
a, z: {2} x TueM — {Z} x TeM, which does not depend on V¥,
Then G ¢ G¥', only if (VF, H) is v-trivial. This would be the
case for Berwald and Rund’s Finsler-pair connections.

Theorem. T he reducibility of the mixed holonomy group implies

that the Finsler space is Riemannian and de Rham decomposition
arises.



Special Finsler spaces:

Minkowski space: L(x,y) does not depend on x :
Theorem. (Heil, 1966) A Finsler space is locally Minkowski space
if and only if its holonomy group G% is trivial.

Berwald spaces — Szabd’s lecture



Landsberg space
Definition. Let (ry7,9) be a Finslerian vector bundle, H a ho-

mogeneous connection and g a Riemannian metric in the Finsler

vector bundle w*(ryr).
(ta,9, H) is called a Landsbergian vector bundle if the Berwal-

dian Finsler pair connection (VE, H) is h-metrical.

Applying the construction of the Berwaldian connection HB the
assumption can be expressed as

dL*osodH" =0 veTM (3)

Using the covariant derivation of HB it is equivalent to Viyg =0
for any horizontal U € X2 (TM).

We have the classical notion of Landsberg space if H = N,
where N is the Barthel homogeneous connection. A series of
"iff"" conditions is known for Landsberg spaces.



There are a lot of interesting results concerning Landsberg spaces
due to S. Dragomir,Z. Kovacs,H. Yasuda. Specially, Landsberg
spaces are characterized by the condition that the indicatrix I,
at any point p € M is a totally geodesic submanifold of the total
space ITM of the indicatrix bundle. T. Aikou proved that the
LLandsberg property is equivalent to that the tangent fibres are
totally geodesic submanifolds of T'M with respect to the Sasaki
metric of T'M.

[ Aikou, T.: Some remarks on the geometry of tangent bundle of Finsler
manifolds. Tensor, N. S. 52 (1993), 234-242.]



Consider now the parallel translation with respect to H. It exists
for entire curve p: I — M. Therefore the parallel translation
Py: TyM — TyM is a homogeneous bijective map if ¢ joins p e M
and g € M. Secondly, a fibre T, M at a point can be regarded as
a Riemannian space by g(p, z) fixing the point p.

Theorem. (Ichijyo, 1983, Kozma, 1995)

(tym,9,H) is a Landsbergian vector bundle if and only if the par-
allel translation of the homogeneous connection is an isometry
between the fibres as Riemannian spaces for any curve.



Theorem. (Kozma, 1997) The holonomy group of a Landsberg
manifold is a compact Lie group.

Proof. (Sketch) It follows that the holonomy group is a closed
subgroup of the isometry group of the fibre considered as Rie-
mannian space. On the other hand the indicatrix remains invari-
ant when applied the holonomies. Take the restriction of the
holonomies on the indicatrix. Now the indicatrix at a point z is
a compact Riemannian space, therefore its isometry group is a
compact Lie group. Thus the holonomy group is a closed sub-
group of the compact Lie isometry group, consequently itself is
a compact Lie group, too.

L]



