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1. Some fundamental concepts of Finsler Geometry.
A relationship with physical principles

The so-called Finsler Geometry which has been originated by Paul Finsler
in 1918, it is not so well known yet even at the present time.

Finsler geometry has started with Finsler’s famous dissertation under the
supervision of C. Caratheodory who intended to geometrize the calculus of
variations. However according to Matsumoto the creator of this geometry
is L. Berwald in 1925. The name “Finsler Geometry” was first given by J.
Taylor in 1927.

In 1854 B. Riemann introduced the so-called Riemann metric

ds2 = gij dxidxj (1)

Before arriving at Riamannian metrics he is concerned with the concept
of generalized metric

ds = F (x1, x2, . . . , xn, dx1, . . . , dxn) (2)

which gives the distance between two points x and x + dx.
He discusses the conditions which should be satisfied by the function

F (x, dx). Conditions given by him are as follows:
(F1) F (x, y) > 0 for any y = dx
(F2) F (x, py) = pF (x, y) for any p > 0
(F3) F (x,−y) = F (x, y)
The condition (F1) expresses that the distance between two points should

be positive.
The homogeneity condition (F2) is also natural. If the quantities yi are

multiplied by p then the value of the metric function F (x, y) (distance) should
be done by p. The condition (F3) expresses the symmetry of distance between
two points. However (F3) is enough restricted. We shall see in the following
that (F3) is not necessary (e.g. in physical applications). Also as pointed
out by S.S.Shern ”Finsler geometry is just Riemannian geometry without a
quadratic restriction” (Notes of AMS, Sept. 1996), which is given by rel. (1).

The length s of a curve C: xi(t), a ≤ t ≤ b in a manifold of consideration
is given by

s =

∫ b

a

F (x(t), y(t)) dt y(t) =
dx

dt
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If C is to be written by another parameter τ = τ(t), c ≤ τ ≤ d the length of
C:

s =

∫ d

c

F

(
x,

dx

dτ

)
dτ

The integral of the length is independent of the parameter if and only if
the condition (F2) is valid.

F (x, py) = pF (x, y) p =
dτ

dt
> 0

Remark 1. The anisotropic character of a Finsler space is expressed in bet-
ter way by the concept of indicatrix x: fixed, F (x, y) = 1.

Remark 2. If the condition (F2) is not valid another class of metric spaces
different from Finsler spaces can be introduced, for example Lagrange
spaces.

By Euler’s theorem of homogeneous functions we can get for the function
F homogeneous degree one, the relations.

F (x, y) =
∂F (x, y)

∂yi
yi ∂2F (x, y)

∂yi∂yj
= 0

from which we derive

F 2(x, y) =
1

2

∂2F 2(x, y)

∂yi∂yj
yiyj

Using an analogous to Riemannian geometry for the norm of a vector we
get

1

2

∂2F (x, y)

∂yi∂yj
yiyj := fij(x, y), det(fij) �= 0 (3)

fij plays the role of metric tensor or a potential in the Finslerian general
relativity (covariant tensor of order two) which come from the function F ,
so we can call F generator function or metric function.

When the metric tensor fij(x, ω) depends on an intrinsic variable
ω = y, z, ξ (where y = vector, z = scalar, ξ = spinor) the form of Finsler
space changes. In the case that the anisotropic metric tensor fij depends
on spinors a theory of anisotropic space-time in relation with spinors was
developed by P.Stavrinos and S.Vacaru [8].

If we consider a Finsler-type space-time the anisotropic metric tensor
fij(x, y) depends on, even locally, the directional variables and thus there are
two possibilities in defining the causality (H.Ishicawa, J.Math. Phys. 1981).
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1. V i will be called null if fij(x, y)V iV j = 0 with respect to the direction y.

2. V i will be called null if fij(x, V )V iV j = 0

In Cartan’s sense (x, y) represents the element of support. Also a ten-

sor Cijk =
1

2

∂fij

∂yk
(was introduced by Cartan) is fundamental significant in

Finsler Geometry.

Cijk = 0 =⇒ Riemannian geometry (4)

The Christoffel symbols in a Finsler space are constructed by fij(x, y).

γijk(x, y) =
1

2

(
∂fkj(x, y)

∂xi
+

∂fik(x, y)

∂xj
− ∂fij(x, y)

∂xk

)
(5)

are given in same way with of Riemannian space where Γi
jk are constructed

by a Riemannian metric aij(x).
The quantities γijk(x, y) are called Finslerian Christoffel symbols.
Osculating Riemannian metric.

aij(x) = fij (x, y(x)) (6)

We suppose that y(x) is vector field defined over a region U of a Finsler
space Fn. Then a Riemannian metric aij(x) is defined over U by means
of (6).

The region U is called Osculating Riemannian manifold.
Christoffel symbols are written

aijk =
1

2

(
∂akj(x, y)

∂xi
+

∂aik(x, y)

∂xj
− ∂aij(x, y)

∂xk

)
(7)

¿From a physical point of view the metric given by (6) and the Christoffel
symbols (7) play a fundamental role in some problems of Finsler relativity
e.g. for a static gravitational field (Asanov’s monograph 1985 [2]).

¿From the variational problem of the calculus of variation

δ

∫
ds = 0 ds = F (x, ẋ)

we get the Euler-Lagrange equations in Finsler geometry

d

ds

(
∂F (x, ẋ)

∂ẋ

)
− ∂F (x, ẋ)

∂x
= 0
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where ẋ =
dx

ds
d2xi

ds2
+ γi

jk(x, ẋ)ẋj ẋk = 0 (8)

The equation (8) yields the equation of geodesics of a Finsler space.
In the case of special type of a Finsler space so-called Randers space the

relation (8) provides us that the motion of a charged particle in a such Finsler
space is a geodesic in contrast with the movement of a charged particle in
a Riemannian space-time (gravitational field) in which the electromagnetic
field is present.

Berwald is the first who introduced the concept of connection in Finsler
space (1926).

He introduces the functions

2Gi(x, y) = γi
jk(x, y)yjyk (9)

differentiates it twice

Gi
j =

∂Gi

∂yj
Gi

jk =
∂Gi

j

∂yk
(10)

Gi
jk(x, y) are symmetric in subscripts.
The homogeneity condition (F2) allows us to write the differential equa-

tion of a geodesic curve (8) in the form

d2xi

ds2
+ Gi

jk

(
x,

dx

ds

)
dxj

ds

dxk

ds
= 0 (11)

If we consider the notion of parallel displacement of a vector field V i along
the curve C : xi = xi(s) according to Berwald it is defined by the differential
equations

dV i

ds
+ Gi

jk(x, y)V j dxk

ds
= 0 (12)

where yi = yi(s) is a direction field a priori given along C. So rel. (12) is
called “parallel displacement” of V i along C with respect to y = y(s).

By differentiation of Gi
jk(x, y) we get

∂Gi
jk(x, y)

∂yl
= Gi

jkl (curvature tensor)
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In the case that
Gi

jk(x) ⇒ Gi
jkl = 0

such a type of space is called Berwald space. Namely Berwald connections
depends only on the position x. Spaces with Gi

jkl = 0 called by Berwald
“affinely connected spaces” (1925). In these spaces is valid Gijk|l = 0 where
“ | ” means Cartan covariant derivative.

Berwald connection are useful to use in Randers (Finsler) spaces [3].
A type of Finsler space so-called Randers space has been studied and

developed by a physical point of view by Kilmister, Horvath, Ingarden and
G.Asanov [2]. The metric in a Randers space is given by

F (x, y) =
√

gij(x)yiyj + kbiy
i (13)

k =

{
const.

q
mc2

The first part of this metric is a pseudo-Riemannian one. In the third
part of my presentation we shall deal with a type of a Randers space which
is convenient for the study of anisotropic model of space-time.

An important class of generalized non-Riemannian metric spaces have
been studied and developed for mathematical and physical purposes by Ein-
stein, Eddington, Synge, H.Weyl, Eisenhart, Veblen and others. These are
the spaces of paths. In these spaces the metric tensor is not given as in
Riemannian geometry. Riemannian Christoffel symbols are substituted by
another set of functions Gα

βγ(x).
In order to construct a geometry from these symbols you need only a

transformation law

Gγ
αβ

∂x̄σ

∂xγ
= G

σ

νε

∂x̄ν

∂xα

∂x̄ε

∂xβ
+

∂2x̄σ

∂xα∂xβ
(14)

Equations of geodesics

V̇ β + G
β

γσV γẋσ = 0 (15)

V β : contravariant vector
¿From the rel. (14) a more general covariant differentiation can be intro-

duced with respect to Gα
βγ.

V
α

; l =
∂V

α

∂x̄ρ
+ V νG

α

νρ (16)
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If we choose an arbitrary (fixed) path C : xa = xa(t) on a manifold, then
the solutions V β(t) of (15) corresponding to certain initial conditions, that
is to a vector in the manifold given at a point of C. By the relation (15) V β

are said to be parallel with respect to the displacement defined by Gα
βγ .

In the framework of a more general type of given functions H i(x, y), as
was suggested by Douglas the general space of paths is

d2xi

ds2
+ H i

jk(x, y)yjyk = 0 (17)

where H i
jk(x, y) =

∂2H i

∂yj∂yk
and yi =

dxi

dt
.

If there is a metric function F (x, y) in the space and hence a metric tensor
fij(x, y) the functions H i(x, y) are equivalent with Gi(x, y) given by Berwald
(which are connected with γi

jk(x, y) by (9)). In this case the set of equations
(17) with t = s represent the geodesics of the metric F (x, y).

An application to the general relativity

Finsler geometry is the geometry of space and motion.
In our universe we remark that “there is no position without motion”.

A Finsler space can be considered as a manifold of positions (coordinate
systems xi) and of tangent vectors yi (velocities) along the curves (world
lines of the moving particles) of the background.

The general spaces of paths are closely connected with the principle of
equivalence.

In the four dimensional world of space-time the trajectory of a particle
falling freely in a gravitational field is a certain fixed curve. Its direction at
any point depends on the velocity of the particle. The principle of equivalence
implies that there is a preferred set of curves in space-time at any point, pick
up any direction and there is a unique curve in that direction that will be
trajectory of any particle starting with that velocity. These trajectories are
thus the properties of space-time itself.

This standpoint reveals a profound relation between the principle of
equivalence and the space-time of paths in Finsler spaces, namely rel.
(11),(12),(15),(17) or rel. (8) of Finsler geodesics are closely related with
the equivalence principle.

In addition with a Finsler-Randers type space-time as we shall present in
the following, the limits of the equivalence principle of General Relativity can
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be extended since the presence of the electromagnetic field does not affect
the geodesic motion of a charged particle in the space. The electromagnetic
field is intrinsically incorporated in the geometry of the space.

In Finsler spaces there are different types of connections as Berwald con-
nections, Cartan connections, Chern (Rund) connections, Hashiguchi con-
nections. These connections play a crucial role in Finsler geometry and its
applications (cf. Bibliography).

Remark

Every type of connections provides us covariant differention. Tensors and
curvatures are constructed from these connections. Variational problems (e.g.
equations of geodesics) and deviations of geodesics which are important from
a mathematical and physical point of view are connected with the tidal forces
of the space (which depend on the original connections). We shall mention
about them in the part 2.
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2. Riemannian-Finslerian deviations of
geodesics and their consequences to physical

phenomena

In this part we study the geometrical and physical properties of the equa-
tion of geodesic deviation in Riemannian and Finslerian (anisotropic) space-
time. We extend the concept of this equation to the of weak fields in a
Fisler-Randers space-time.

1 Some types of Riemannian equations of

geodesic deviations and their physical

principles

The profound role of the geodesic deviation of Riemannian space-time has
been recognized in the general relativity for a long time. [1, 2, 3, 4]. The
general form of this equation in Riemannian space-time is given by

δ2ηk

δs2
+Rk

lmnv
lvmηn = 0 (1)

where δ/δs means the usual covariant derivative, Rk
emn represents the Rie-

mannian curvature tensor, ηk is the separation vector which separates two
nearby free falling material test particles (δ

∫
ds = 0). This vector represents

physically the position between two free-falling particles, vn is the tangent
four-velocity of the particles and the parameter s symbolizes the proper time
along the geodesics.

The equation (1) gives the relativistic generalization of the Newtonnian
result for the tidal force field. The form of the curvature tensor Ri

jkl (tidal
field) of (1) expresses a property of the space. How does the small distance
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between corresponding points vary as they move along the geodesics? This
is the problem of geodesics deviation and if we can solve it we get a good
insight into the nature of the space. When the geodesics are time-like or null
this problem is based on observational tidal phenomena.

In the Riemannian space-time the most important forms of the curvature
tensor appear to physical phenomena in two cases. When the space is of
constant curvature tensor K and when the gravitational field is weak.

In the first case the form of the Riemannian curvature tensor given by
(1) is written in the form

Rijkl = K (gikgjl − gilgjk) (2)

If we set into correspodence the events on two neighbouring spacelike, time-
like or null geodesics C, C ′ in a space of constant curvature K the equation
of their deviation reduces to

d2

ds2

(
nivi

)
+ (ε)Knivi = 0 (3)

where ε = ±1 and vi represents any vector propagated parallely long to C.
In this space the equation of geodesics deviation may be integrated.

The deviations of spacelike and timelike geodesics are given by

nivi = α sin s(εK)1/2 + β cos s(εK)1/2 if K > 0 (4)

nivi = αs+ β if K = 0 (5)

nivi = α sinh s(−εK)1/2 + β cosh s(−εK)1/2 if K < 0 (6)

Null geodesics are of great importance in relativity because nearly all astro-
nomical information comes to us optically i.e. by photons in space-time. The
deviation vector in this case takes the form

η2 = α′s2 + β ′s+ γ

where α′, β ′, γ are constants. The relation (2) is closely connected with the
observable microwave background radiation [6] which we will discuss in the
next part (§3) in the framework of an anisotropic Finslerian space-time.

The equation of geodesics deviation (1) can also be set in the form of
orthonormal tetrads λi

(α) and to be investigated in relation with the Fermi
and optical coordinates which are useful for the study of physical observations
[1, 4].
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In the second case we consider the gravitational field to be weak. The
weakness of the gravitational field is expressed at least in a certain region
of space-time to decompose the metric into the flat Minkowski metric plus a
small perturbation (this decomposition of the metric is not unique).

gµν = ηµν + hµν |hµν | << 1, (7)

ηµν = diag(−1, 1, 1, 1). (8)

In the solar system for example we have

|hµν | ∼ φ|/c2 � GM�/c2R� ∼ 10−6.

However, the field can vary with time as in the case of gravitational waves,
therefore there are no restrictions on the motion of test particles.

The Christoffel symbols and the Ricci curvature tensor in linearized form
given by

γα
µν =

1

2

(
hα

µ,ν + hα
ν,µ − h,α

µν

)
(9)

Hµν =
1

2

[
hλ

µ,λν − �hµν − hλ
λ,µν + hλ

ν,λµ

]
(10)

H = hλσ
λσ − �h h : hλ

λ = nαβhαβ (11)

where the symbol � means the D’ Alembertian of the flat space-time. The
perturbations hµν can be determined in a linearized field theory by the
field equations Gµν = 8πGTµν in the terms of the “flat” energy-momentum
tensor T µν . This consideration permits us to determine gµν in the form
gµν = hµν + ηµν . Gµν represents here the linear approximation of Einstein
tensor. Although Tµν produces a weak gravitational field this does not react
back on the source. For example in the case that we consider an incoher-
ent dust (T µν = ρuµuν , uµ = dxi

ds
is the four-velocity of the stream-lines, ρ

is the density of the dust) [5]. An interesting problem in the study of the
linearized gravitation is that it may predicts magneto-gravitational results
by the motion of masses, similar to those of electromagnetism [6]. The weak
gravitational field reveals some physical effects in the space which can be cre-
ated by the appearence of gravitational waves in the form of traveling tidal
forces.

In order to detect a gravitational wave, at least two particles are needed.
The propagation of a gravitational wave through space-time produces a rel-
ative deviation of two nearby geodesics and this deviation can be measured
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in terms of the vector ηµ. The separation of nearby free-falling masses is
governed by equation (1). One can determine certain components of the cur-
vature tensor Rrlmn, for example observing the shift of interference fringes
with a Michelson interferometer (for more details [3]).

In this case the equation deviation (1) reduces to

d2ξk

dτ
= −Hk

0l0ξ
l (τ : proper time)

(ξ : deviation vector) (12)

for a freely falling geodesic reference frame (Fermi coordinates) of the masses.
The tidal force is therefore fk = −mHk

0l0ξ
l (m: mass of the particles)

and can be used for measuring the components Hk
0l0 of the Riemann tensor

Hk
ilj. The equation (7) is useful for the description of the polarization of the

wave [7].

2 Deviations of geodesics and weak fields in

Finsler-Randers space-time

The concept of geodesic deviation can be studied in a Finsler space in analogy
with the Riemannian case [8, 9, 10, 11]. Some physical interpretations have
been studied in different forms of Finsler spaces [9], [10], [15].

In a general Finsler space all the geometrical elements depend on the po-
sition x as well as the direction y = dx/dt as we have mentioned in the part
one. For example considering in a Finsler space a point x and a differentiable
curve passing through x it is necessary to consider its tangent vector y at
the point x. This vector defines a direction in that point. The couple (x, y)
consists the so-called supporting element of the Finsler space. Analytically,
a Finsler space is defined as a triplet (M,V, F ) where M = Mn is a differen-
tiable manifold of class C∞, V =

⋃
x∈M

Vx is a cone bundle, Vx is a cone (Vx:

cone when y1 ∈ Vx then y2 = py1 ∈ Vx, p > 0) in the tangent space Tx(M),
F : V \ {0} → R+ is a positive function F (x, y), x ∈ M, y ∈ Vx, y �= 0 of
class C∞ satisfying the following conditions:

1. F is (1) y-homogeneous,
F (x, ky) = kF (x, y), k > 0
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2. F is metrically regular, i.e.,

|fij| :=
∣∣∣∣12 ∂2F 2

∂yi∂yj

∣∣∣∣ �= 0 (13)

F is called the generator metric function or the Lagrangian. The tensor
fij(x, y) is called as in Riemannian geometry the metric tensor but it has here
a more general meaning since it depends, in general, also on the direction y
being by this anisotropic. The length of a curve C : t ∈ [0, 1] → +x(t) ∈ M
such that y(t) = dx/dt = ẋ(t) ∈ Vx for all t ∈ [0, 1] is defined by the integral

s =

∫ 1

0

F (x(t), y(t))dt =

∫
C

F (x, dx)

=

∫ 1

0

[fij(x(t), y(t))y
i(t)yj(t)]1/2dt (14)

which is independent of the parametrization of C. Instead of (14) we can
also write

ds = F (x, ẋ)dt = F (x, dx) = [fij(x, ẋ)dx
idxj ]1/2. (15)

In a Finsler space there are three types of curvatures Ri
jkl, P

i
jkl, S

α
βγδ, for

more details someone can see in the monographs [8], [12], [18].
In the framework of Finler geometry the equation of geodesic deviation

is given in the following forms:

δ2zi

δu2
+Ki

jhk(x, y)y
jyhzk = 0 (Rund type) (16)

δ2zj

δu2
+Hj

k(x, y)z
k = 0 (Berwald type) (17)

where the “deviation tensor” is defined by

Hj
k(x, y) = Kj

ihky
iyh

An extension of the concept of geodesic deviation to the vertical geodesics in
the “Tangent Riemannian” space-time with metric

ds2
x = gij(x, y)dy

idyj x : const.

5



was given by P. Stavrinos (1992) [14] and P. Stavrinos-H. Kawaguchi (1993)
[11].

D2ξi

ds2
+ Si

jklξ
knmξlF−2 = 0

where Si
jkl is the curvature tensor of Cartan (similar to Riemannian curvature

tensor). Si
jkl is being associated by Cartan connection coefficients Si

jk(y).
Physical applications of this equation can be studied for an isospin space.
Generalized Finslerian deviation equations can be investigated in the low-

velocity approximation approach for static and spherically-symmetric case of
the Finslerian gravitational field. The corrections of Finslerian type with
respect to motion (velocity) are of experimental significance for all related
observations (tidal forces behaviour or the deviation of trajectories of nearby
spacecrafts).

Explicit formula for the main term of the geodesic deviation equation was
given in [15].

In the framework of the fibered Finsler gauge approach the deviation
equation has been studied by Asanov and Stavrinos in [10]. The form of
equation is seperated in the horizontal part and in the vertical part. The most
important part is the vertical by a physical point of view since it contains a
Yang-Mills-type gauge tensor εβ

αik.
¿From the horizontal and vertical parts of the geodesic deviation we get

the information:
How the geometry of a fibre influences the behaviour of the background

geodesics.
which is equivalent to the statement:
Appearance of additional terms plays the role of additional forces.
In the framework of Lagrange spaces some results of E.D.G. were given

by Balan and Stavrinos (1996-97) [17] and an extension in Higher-Order
Lagrange spaces by Miron-Balan-Stavrinos-Tsagas (1996) [16].

In a Finslerian space-time the gravitational field fµν(x, v), v = dx/dt and
the Euler-Lagrange equations of curves of the space are related with the rela-
tivistic principle equivalence proposed by Einstein giving the same extremal
curves (geodesic) with initial conditions (x0, v0). That means the line element
of the space with a starting point x0 and v0 the initial velocity or direction
of the path of the particle. An analogous situation can be interpreted to the
Newtonian principle of equivalence and the Finsler space.
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The behavior of particles in a gravitational and electromagnetic field is
expected to indicate that the real geometry in the direction of the unification
is the Finsler geometry.

In a Finsler space the metric function F (x, y) can be considered as a po-
tential function since the metric tensor (gravitational potential) is produced
by this function. In a Randers space the potential function is given by

F (x, y) =
√

γij(x)yiyj + kAi(x)y
i (18)

where γij represents the Riemannian metric, yi = dxi/dλ, λ : parameter
along a curve, k : constant. Ai represents the electromagnetic potential.
The metric tensor of a Randers space is given by virtue of (18) in the form

fij = γij +
2k

σ
ysγs(iAj) + k2AiAj +

k

σ
ylAlhij (19)

where σ =
√

γijyiyj, hij = γij − σ−2γsiγjly
syl and in the lower indices (i, j)

symbolizes the symmetric summation.
We observe that whenever an electromagnetic field exists in a region of

spacetime the geometry becomes Finslerian and the isotropy breaks [13]. The
explicit form of Randers connection coefficients are given by

F l
ij = γ l

ij + El
ij (20)

where γ l
ij are the Riemannian Christoffel symbols and El

ij are quantities

which depend on F j
i and the metric γij

We note from (20) that the electromagnetic field enters in the connection
coefficients of the space.

The geodesics of the Randers space are given by

dym

dλ
+ Fm

ij (x, y)y
iyj = 0 (21)

Inserting the relation (20) to (21) we get the well known Lorentz equation

d2xm

dλ2
+ γ m

ij

dxi

dλ

dxj

dλ
+ kFm

j

dxj

dλ
= 0 (22)

where k is a constant.
The relation (21) represents the equation of motion of a charged particle

in a gravitational and electromagnetic field results naturally as the geodesic
of Finsler space-time.
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The curvature tensor of Randers space is produced by the connection
coefficients by analogy of a Berwald space [12].

H
i

hjk(x, y) = Ri
hjk + Ei

hjk (23)

where Ri
hjk is the Riemannian curvature and E i

hjk represents the “electro-
magnetic curvature”.

Remark 1 In the general relativity the force of gravity is built into the
structure of space-time and exhibits itself in the curvature of space-
time. We recognize as forces only the effects of mechanical stresses or
electromagnetic fields.

In Finslerian relativity the space-time is constructed with an
anisotropic metric (13) fij(x, y), y = dx/dt ≡ v(t), for example in a
Finsler-Randers space with the metric of the form (18). In this case the
metric of space-time is constructed with the gravitational field (curva-
ture Rijkl(x, v) �= 0) as well as the electromagnetic curvature Hijkl �= 0
which was mentioned in (23).

Remark 2 In a Finsler-Randers space every particle moving along a
geodesic of the space satisfies the Lorentz equation. This is identi-
fied with the Lorentz equation of a particle moving in a curve of the
gravitational and electromagnetic field of the Riemannian space-time
(not geodesic).

There are some cases that Randers space consists of a good application of
physics of the Finsler spaces. Under a linearized approach of the gravitational
field the Randers proper time interval can be written in the form of a first
approximation of the Riemannian metric γij.

dτ = F−1(x, v)

(√(
nij + ε

(1)
ij

)
vivj + kAivi

)
dt (24)

where vi = dxi/dt represents the four velocity of the particle with respect

to the proper time τ , |ε(1)
ij |  1, ε

(1)
ij represents the small corrections to the

flat space-time metric nij and k to be a constant. The linearized form of the
metric tensor by (19) is given now by

fij =
(
ηij + ε

(1)
ij

)
+
2k

σ′ v
sηs(iAj) + k2AiAj +

k

σ′v
lAlθij (25)
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where σ′ =
√

ηijvivj , θij = ηij − σ
′−2ηsiηjlv

svl.
Considering in (25) the case where vs = (1, 0, 0, 0) we get for the Finsle-

rian potential f00 of the Randers space

f00 = −1 + ε
(1)
00 + k2φ2 + kφ (26)

with φ = A00. The Finslerian potential f00 takes the value −1 for the values
of ϕ:

ϕ1,2 =
[
−1± (1− 4ε

(1)
00 )

1/2
]
(2k)−1 (27)

This is useful to derive the Riemannian or Newtonian limit from the equation
of motion of the form

v̇l + F l
00v

0v0 = 0

or v̇l + F l
00 = 0

where the full interpretation F k
lm is given by (20).

In this case the Christoffel symbols and the curvature tensor of the Ran-
ders space will take the form is given (28), (29). So we get from (20), (23)
the relations

h̄i
lj = εi

lj + hi
lj (28)

h̄i
ljk = εi

ljk + hi
ljk (29)

where εi
jk, ε

i
jkl are the linearized Riemannian Christoffel symbols and the

curvature tensor. The terms hi
jk, h

i
jkl are given explicitly in [13].

Using the linearized connection coefficients by (28) we take the Lorentz
equation of the weak field in a Randers space

dvm

dτ
+ εm

ijv
ivj + kFm

j vj = 0 (30)

The deviation of geodesics in Randers space is given by

δ2ξi

δλ2
+H

i

jhk(x, v)ξ
jvhvk = 0 (31)

where
δxi

δλ
= ξi

|hV
h, ξi

|h =
∂ξi

∂xh
+ Li

hk(x, v)ξ
k

9



Li
hk are the Cartan connection coefficients , ξi represents the deviation vector

and vk the tangent vectors of a geodesic surface included in the Randers
space-time. We note from (31) that the deviation equation has two terms :
one which corresponds to the gravitational deviation that we would observe if
there was no electromagnetic field and which is associated with the Ri

hjk part
of the curvature tensor. The other one corresponds to a mixed geometrical
and electromagnetic deviation and is associated with the Ei

jhk part of the

H
i

hjk tensor. It would be interesting to study the second term of deviation
trying to connect it with the electric force that two freely falling charged
particles would exert each other. In such a case this force would result
naturally as a geometrical effect in a Finsler space-time and would not be
necessary to impose it additionally as it seems in a Riemannian space.

When Ri
jhk = 0, from (31) we infer that the first term of the Randers

metric corresponds to a Minkowski metric and the Finsler (Randers) space
becomes v-locally Minkowski.

F (x, v) =
√

ηµνvµvν + kAi(x)v
i (32)

The only force that influences the two particles is due to the presence of the
electromagnetic field. The deviation equation takes the form [13]

δ2zi

δu2
+ Ei

jklz
jvkvl = 0 (33)

In this case the geometrical properties of the field are characterized by
a homogeneous and anisotropic space. The metrical fundamental tensor de-
pends only on the velocities which produce the anisotropic properties of the
curved Finsler space-time. Consequently there exists a frame of reference in
which F i

jk = 0. This result is convenient if one uses the harmonic coordinate
condition for studying a linearized field theory in a Finsler space. Under these
circumstances the geodesic coordinates can be introduced for the particles
which move along these geodesics. From (33) we infer that the propagation
of an electromagnetic wave produces a relative deviation of the two nearby
geodesics (electrical potential lines). In a similar way the propagation of a
gravitational wave through the space-time produces a relative deviation of
the mass-particles moving to the nearby geodesics.

In order to study the weak field of a Randers space related to the deviation
of the two charged particles it is necessary to take into account the relations
(29), (31), (33). This is reasonable since in order to detect a gravitational

10



wave at least two particles are needed. So the deviation of geodesics of the
weak Randers space is written in the form

D2ξi

dτ 2
+
(
εi

ljm + hi
ljm

)
ξj dx

l

dτ

dxm

dτ
= 0 (34)

The relation (34) in a first approximation of hij takes the form

∂2ξi

∂t2
= −

(
1

2

∂2εi
j

∂t2
+ 2F i

0F
0
j + uj

∂F i
0

∂t

)
ξj

The equation (35) coincides with the corresponding equation for a weak field
of the Riemannian space-time [3]. The difference between them is that in the
Riemannian case the electromagnetic field has been introduced ad hoc. In the
equation (31) of the Randers space the electromagnetic field is incorporated
in the geometry and the two charged particles are moved in geodesics of the
Finsler space, and their relative acceleration is governed by the curvature of
the gravitation and electromagnetic field which is produced by the energy-
momentum tensor.

3 Discussion

We studied the geometrical and physical properties of the geodesic deviation
in Riemannian and Finslerian space-times. We also investigated the weak
field in relation with the deviation of geodesics of a Finsler-Randers space
and we revealed some profound properties of the space by virtue of equations
(22), (28), (35). Gravitational waves can be produced by perturbations of
the weak curvatures in Finslerian space-time. Possible relationships between
gravitational waves and the deviation equation can be established to this
space-time analogously with the Riemannian case.

The electromagnetic field is intrisically incorporated in this geometry.
Under this circumstances we extended the concept of the geodesic deviation
in the Finsler-Randers space-time.
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3. On the anisotropic structure of Finslerian
space-time

1 Introduction

In the last years the observational results are useful to confirm the possibility
in the anisotropic expansion of the universe [11].

Anisotropic direction-dependent expansion may be presented if the under-
lying geometry of the universe is anisotropic (in which case the anisotropic
Roberston-Walker metric is no longer valid or if anisotropic non gravitational
forces are present such as a large-scale magnetic field, Thorn 1967).

It is therefore necessary to take seriously the possibility that the Uni-
verse is anisotropic and to investigate what effect anisotropic expansion will
produce on the angular distribution of the background radiation.

On the other hand S.Weinberg notices in his book entitled “The first three
minutes”:

“It is possible the whole universe we can see looking backwards the elapsed
time can be an isotropic and homogeneous clot within a non-homogeneous and
anisotropic universe”.

In a previous paper [10] we studied the Finslerian structure of space-
time caused by the observed anisotropy of the microwave cosmic background
radiation. Finslerian geometrical models which can correspond to anisotropic
structures of regions of space-time can be introduced.

It is known that the biggest part of this anisotropy can be explained if
we use Robertson-Walker metric and take into account the movement of our
galaxy with respect to distant galaxies of the universe [9]. However a small
anisotropy is expected, due to anisotropic distribution of galaxies in space [8].

¿From the above mentioned results it is reasonable to seek for a La-
grangian with respect this anisotropy. As such we choose:

L =
√

aijyiyj + φ(x)k̂ay
a (1)
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where ya =
dxa

dt
.

The vector k̂a expresses the observed anisotropy of the microwave back-
ground radiation.

In this work we study the Finslerian space-time based on (1). In this
framework of our study we use the Berwald-type connection as well as Cartan
connection for the s-anisotropic curvature Si

jkl of the space. Also we derive
the Berwald curvature tensor. The scalar Riemannian curvature is defined
for two directions one of them contains the axis of anisotropy. Also we can
examine some cases in which the scalar curvatures is constant.

In paragraph 4 we study the consequences that are caused by a generalized
D’ Alembertian.

2 Preliminaries

Here we adopt the connection introduced by Berwald as we mentioned pre-
viously. In this case the connection coefficients are defined by Gi

jk,

Gi
jk =

∂Gi
j

∂yk
(2)

Gi
j =

∂Gi

∂yj
(3)

where Gi are defined by the relation:

Gi =
1

2
γi

jky
jyk (4)

where γijk are the Christoffel symbols of Finsler space defined as

γijk(x, y) =
1

2

(
∂fkj(x, y)

∂xi
+

∂fik(x, y)

∂xj
− ∂fij(x, y)

∂xk

)
¿From Euler-Lagrange equations

d

ds

(
∂L

∂ya

)
− ∂L

∂xa
= 0, ya =

dxa

dλ
(5)

we derive the equations of geodesics

d2xi

dλ2
+ 2Gi(x, y) = 0 (6)
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where λ is a special affine parameter (for example the proper time).
The Berwald curvature tensor is written by

H i
hjk =

∂Gi
hj

∂xk
− ∂Gi

hk

∂xj
+Gr

hjG
i
rk − Gr

hkG
i
rj +Gr

j

∂Gi
rh

∂yk
− Gr

k

∂Gi
rh

∂yj
(7)

3 The Geometrical Structure of the

anisotropic model

In the following, the lowering and raising of the indices of the objects k̂a, y
a

and all related Riemannian tensors will be performed with the metric aij .
For the related Finslerian tensors we shall use the Finsler metric fij .

The Lagrangian which gives the equation of geodesics in the case of
(pseudo)-Riemannian space-time is given by:

L =
√

aijyiyj, yi =
dxi

ds
(8)

or, equivalently, we may write for the line element:

dsR =
√

aijdxidxj (9)

where aij is the Riemannian metric with signature (−,+,+,+). Because of
the observed anisotropy, we must insert an additional term to the Riemannian
line element (9). This term must fulfill the following requirements:

(a) It must give absolute maximum contribution for direction of movement
parallel to the anisotropy axis.

(b) It must give zero contribution for movement in direction perpendicular
to the anisotropy axis, i.e. the new line element must coincide with the
Riemannian one for direction vertical to the anisotropy axis.

(c) It must not be symmetric with respect to replacement ya → −ya. This
requirement is necessary in order to express the anisotropy of dipole
type of the Microwave Background Radiation (MBR). We need to have
maximum (positive) contribution for direction that coincides with the
direction of the anisotropy axis, and minimum (negative) contribution
for the opposite direction.
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We see that a term which satisfies the above conditions is ka(x)y
a, where

ka(x) expresses this anisotropy axis. For constant direction of ka(x) we may
consider ka(x) = φ(x)k̂a, where k̂a is the unit vector in the direction ka(x).
Then φ(x) plays the role of “length” of the vector ka(x), φ(x) ∈ R. Hence,
we have the Lagrangian

L =
√

aijyiyj + φ(x)k̂ay
a (10)

¿From (10) we define the Finsler metric function F (x, y) = L. Setting ya =
dxa we have

dsF =
√

aijdxidxj + φ(x)k̂adxa (11)

dsF is the Finslerian line element and dsR is the Riemannian one. We see
that the Finslerian line element is generated by an additional increment to
the Riemannian one due to the anisotropy axis. Now

ds2
F = aijdxidxj + 2φ(x)k̂adxa

√
aijdxidxj + φ2(x)k̂adxak̂bdxb (12)

In order for the Finslerian metric to be physically consistent with General
Relativity theory, it must have the same signature with the Riemannian
metric (−,+,+,+). We have

dsR = c dτ = c γdt = γd(ct) = γdx0 (13)

where γ =
√
1− (v/c)2 and v: 3-velocity in Riemannian space-time. ¿From

relations (13),(12) we obtain:

ds2
F = a00dx0dx0 + 2a0αdx0dxα + aαβdxαdxβ + 2φ(x)k̂0dx0dsR

+ 2φ(x)k̂αdxαdsR + φ2(x)k̂0k̂0dx0dx0 + 2φ2(x)k̂0k̂αdx0dxα

+ φ2(x)k̂αdxαk̂βdxβ

or

ds2
F =

(
a00 + 2γφ(x)k̂0 + φ2k̂0k̂0

)
dx0dx0+

+
(
aαβ + φ2(x)k̂αk̂β

)
dxαdxβ + 2γφ(x)k̂αdxαdx0

+ 2a0αdx0dxα + 2φ2(x)k̂0k̂αdx0dxα (14)

where α, β = 1, 2, 3. ¿From relation (14) it is evident that we must have

(k0(x))
2 + 2γk0(x) + a00 < 0 (15)

δαβ (aαβ + kα(x)kβ(x)) > 0 (16)
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for the signature to be preserved, where we have written φ(x)k̂i = ki(x).
Relation (15) admits negative values for

−γ −
√

γ2 − a00 < k0(x) < −γ +
√

γ2 − a00 (17)

while from (16) yields:
(kα(x))

2 > −aαα (18)

which is true for any ka(x) since aαα > 0.
Then for any physically acceptable vector, its 0 component k0(x) must

lie in the interval (17).

The equation of geodesics is given by:

d2xl

ds2
+

(a)

Γ l
ijy

iyj + σalm(∂jφk̂m − ∂mφk̂j)y
j = 0 (19)

We observe that in the equation of geodesics we have an additional term,
namely σalm(∂j(φk̂m) − ∂m(φk̂j))y

j which expresses rotation of the aniso-
tropy axis.

Now for the case of electromagnetic waves we must modify relation (19).
This is because the world line of an e.m. wave is null. In geometrical optics
the direction of propagation of a light ray is determined by the wave vector

tangent to the ray. Let
w

kl = dxl/dλ be the four-dimensional wave vector,
where λ is some parameter varying along the ray. We have:

d
w

kl

dλ
+

(a)

Γ l
ij

w

ki
w

kj + σalm(∂jφk̂m − ∂mφk̂j)
w

kj = 0 (20)

One possible explanation of the anisotropy axis could be that it expresses
the resultant of the spin densities of the angular momenta of galaxies in a
restricted region of space (ka(x) spacelike). It is known that the mass is
anisotropically distributed for regions of space with radius≤ 108 light years
[6]. Then an important kind of anisotropy might result from the ordering of
the angular momenta of galaxies. As we move to greater distances (radius≥
108 l.y.) the resultant of the spin densities is approximately zero, as it is
expected for an isotropic universe.

ka(x) =
∑

i

=
(i)

k a(x) ≈ 0 (21)
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where
(i)

k a(x) is the spin density tensor of each rotating mass distribution. It
may be possible that the restriction (17) expresses the fact that we can not
have a largely anisotropic universe. Then the anisotropy vector can not take
arbitrary values.

The spin is defined through the spin density tensor [2] from the relation

sab =

√−g

4π
εabck

c(x) (22)

In the case that φ(x)k̂a expresses spin density, the function φ(x) is related
to mass density (angular momenta depends upon angular velocity and mass
distribution).

¿From equation (19) we see that for small variation of the resultant of the
spin densities vector, the deviation from the Riemannian geodesics is very
small, if not negligible.

¿From the equation of geodesics (19) we obtain for movement yi perpen-
dicular to ki:

d2xa

ds2
+

(a)

Γ l
ijy

iyj + σalm∂jφk̂myj = 0 (23)

¿From (23) it is evident that although the contribution to the dsR line element
is zero for yi vertical to ki, the equation of geodesics is different from the
Riemannian case. In the case, however, where ∂iφ(x)is parallel to k̂i, i.e.
the increment of anisotropy takes place only along the anisotropy axis, then
the equation of geodesics is identical with the geodesics of the Riemannian
space-time.

Using the notation β = k̂ay
a, σ =

√
aijyiyj, we calculate the metric

tensor:

fij =
F

σ
aij +

φ(x)

2σ
S
ij

(
yik̂j

)
− βφ(x)

σ3
yiyj + φ2(x)k̂ik̂j (24)

where S
ij
is an operator and denotes symmetrization of the indices i, j, e.g.

S
ij
(Aikjl) =

1

2
(Aikjl + Ajkil).

Accordingly we define the antisymmetric operator

A
ij
(Mikjl) =

1

2
(Mikjl − Mjkil).

6



The inverse metric is

f ij =
σ

F
aij − σφ

2F
S
ij

(
yik̂j

)
+

φ(β +mσφ)

F 3
yiyj (25)

as it may be verified by direct calculation, where m = k̂ak̂
a = ±1 according

weather k̂a is spacelike or timelike (in order to not loose generality, we do
not identify k̂a as spacelike). The determinant of the metric is

f = det(fij) =

(
F

σ

)5

det(aij) (26)

The finslerian Christoffel symbols of the first kind are given by

γijl =
F

σ

(a)

Γ ijl + Λijl +Mijl (27)

where
(a)

Γ ijl =
1

2
(∂ialj + ∂jail − ∂laij) (28)

are the Christoffel symbols corresponding to the metric aij.

Λijl = G
ij{l}

[(
3βφ

2σ5
yiyj − φ

σ3
S
ij
yik̂j − φβ

4σ3
aij

)
∂laaby

ayb

]
(29)

and

Mijl = G
ij{l}

[(
β

2σ
aij +

1

σ
S
ij
yik̂j − β

σ3
yiyj + 2φk̂ik̂j

)
∂lφ

]
. (30)

The operator G
ij{l}

denotes an interchange of the indices in the form this

interchange appears in the definition of the Christoffel symbols of a metric,
e.g.

G
ij{l}

Aijl = Alji + Ailj − Aijl

G
ij{l}

∂laij = 2
(a)

Γ ijl

The Christoffel symbols of the second kind are

γl
ij =

(a)

Γ l
ij +

(
φ(β +mσφ)

σF 2
yayl − 2φ

F
S
al
(yak̂l)

)
(a)

Γ ija +
σ

F

(
Λl

ij+

+M l
ij

)
+ (Λija +Mija)

(
φ(β +mσφ)

F 3
yayl − 2σφ

F 2
S
al
(yak̂l)

)
(31)
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where Λi
jl = Λjlka

ik and M i
jl = Mjlka

ik. In relation (31) it is seen that,

besides the
(a)

Γ i
jk = 0 terms, the rest express the anisotropic deviation from

the Riemannian Christoffel symbols. When φ = 0, i.e. absence of anisotropy,
the Finsler Christoffel symbols coincide with the Riemannian ones. From the

above relation, for
(a)

Γ i
jk = 0 we have γi

jk 	= 0. This shows the dependence of
γi

jk from the anisotropy terms.
¿From the relations (2)–(4) we find

Bl =
1

2

(a)

Γl
jky

jyk + σamlyj∂[jφ(x)k̂m] (32)

Bl
k =

∂Gl

∂yk
=

(a)

Γl
jky

j + σaml∂[kφ(x)k̂m] +
1

σ
amlyi∂[iφ(x)k̂m]yk (33)

Bl
kj =

(a)

Γl
jk +

1

2

(
akjy

rals(∂[rφk̂s]) + l̃ka
ls(∂[jφk̂k])

+l̃ja
ls(∂[kφk̂s])σ

−1 − 1

2
l̃il̃jy

kals(∂[kφk̂s])

)
(34)

By substituting in (7) the Berwald type curvature tensor takes the form

Bl
hjk = I i

hjk(x)

+ A[jk]

[
l̃ha

im(∂[jφk̂m]);k + V mahja
il(∂[mφk̂l]);k + l̃ja

is(∂[hφk̂s]);k

]
σ−1

− V ml̃hl̃jσ
−3ail(∂[mφk̂l]);k (35)

where

I l
hjk(x) = Ri

hjk(x)+
1

2
A[jk]

[
ais(∂[hφk̂s])(∂[jφk̂k]) + ahka

ilaml(∂[mφk̂l])(∂[jφk̂l])

−ais(∂[kφk̂s])(∂[hφk̂j])
]
(36)

By the relation (35), contraction of the indices i and k gives

Bhj = Ihj(x) + Λhj
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where we put

Ihj = Rhj +
1

2
A[ji]

[
ais(∂[hφk̂s])(∂[jφk̂i]) + δl

ha
mr(∂[mφk̂r])(∂[jφk̂l])

−ais(∂[iφk̂s])(∂[hφk̂j])
]

Λhj = A[ji]

[
l̃ha

im(∂[jφk̂m]);i + V mahja
il(∂[mφk̂l]);i + l̃ja

is(∂[hφk̂s]);i

]
σ−1

− V ml̃hl̃jσ
−3ail(∂[mφk̂l]);i

The term Rhj represents the Ricci tensor of Riemannian curvature.
The scalar Riemannian curvature in Finsler spaces for two directions

(k, V ) one of which (k) represents the axis of anisotropy is given by the
form

R(x, k, V ) =
Bjihk(x, k)kjkhV iV k

(fjh(x, k)fik(x, k)− fji(x, k)fhk(x, k)) kjkhV iV k

where the explicit form of Bjihk is given by (35).
In the following we consider the curvature for a tangent Riamannian space

(Mx : x = constant). In a previous work [10] we derived the Ricci tensor of
s-curvature of Cartan

Sih = −3(mσ2φ2 − β2φ2)

4F 2σ2
aih − φ2

4F 2
k̂ik̂h+

+
βφ2

2F 2σ2
S
ih
(k̂iyh) +

3mσ2φ2 − 4β2φ2

4F 2σ4
yiyh (37)

The scalar S of Si
jkl curvature is given by

S =
5(β2 − mσ6)φ2

2σF 3
(38)

for the indicatrix we get for F = 1 and m = 1

S =
5(β2 − σ2)φ2

2σ
(39)

In the case where S is independent of the direction V the curvature tensor
Si

jkl can be written as

Sijkl = S (fikfjl − filfjk) S : const. (40)

9



This formula expresses that the curvature parameter S of anisotropy is
constant in the fixed point x and for every direction. For example if we have
the indicatrix which is of constant curvature hypersurface of Finsler spaces.

In the relation (39) we have S = 0 when anisotropy is φ(x) = 0. In this
case the microwave background radiation is derived in the framework of a
Riemannian space of constant curvature.

The anisotropy parameter S is constant by (39) when φ(x) = 0 and
F = 1. Physically it means that the norm of φ(x)k̂a is constant. Also for
this case the direction of V i with respect to k̂a should be constant, V i

;k = 0.
The indicatrix of M4

x is a Riemannian space of constant curvature given
by [12]

Rαβγδ = (S + 1)(fαγfβδ − fαδfβγ) (41)

where Rαβγδ is the curvature tensor of the indicatrix.

Remark
If ki(x) is approximately zero that means by (21) the resultant of spin

density tensor is zero. In this case we have also that the Finslerian space-time
is independent of the direction of V , that means the space-time is approxi-
mately a Riemannian space of constant curvature R.

4 Generalized D’Alembertian

In special relativity the expression of the electromagnetic tensor Fµν in terms
of a vector potential Aµ is given by

Fij = Aj,i − Ai,j = Aj;i − Ai;j (42)

Maxwell’s equations if the 4-current J i = 0 have the form

F ij
;k = 0 (43)

(electric charged is not present)
The background of these equations is a Riemannian space-time with met-

ric tensor gij.
If we substitute (42) to (43) we find that the 4-potential satisfies:

�Ai − gabAa;ib = 0 (44)

10



where � symbolizes the generalized d’Alembertian of Riemannian space-time

�Ai = gabAa;ib (45)

By the communication rule for covariant differentiation we have

Aa;ib − Aa;bi = Rj
aibAj (46)

and hence
gabAa;ib −

(
gabAa;b

)
;i
= −RijA

j (47)

Now, if we impose on Ai the Lorentz condition

gabAa;b = 0 (48)

the condition (45) becomes

�Ai +RijA
j = 0 (49)

The equation is interesting because it brings in the usual wave-operator
� and the Ricci tensor representing the matter or energy present.

In vacuum we get simply �Ai = 0 if we neglect the gravitational effect
of the electromagnetic field.

In analogy of the Riemannian case we can derive the generalized form of
a D’Alembertian in the framework of a Finslerian space-time, in that case it
yields

F̃ij = Ai;j(x)− Aj;i(x) = δjAi − δiAj − Lh
ijAh + Lh

jiAh = Fij (50)

where “ | ” denotes the Cartan covariant derivative in the tangent bundle
T (M), where ∂̇bAa(x) = 0.

Consequently, when the 4-current J i = 0, we get

F̃ ik
|k = 0 (51)

F̃ ij = Aj|i − Ai|j ⇒
F̃ ij
|j = A

j|i
|j − A

i|j
|j = fmiAj

|m|j − fmjAj
|j|m

= fmi
(
Aj

|j|m + ArRj
rmj − Aj

|rR
r
mj

)
− fmjAi

|m|j = 0

11



ArRi
r − AhCj

hrR
ri
j − A

i|j
|j = 0 (52)

Where we put Ai|j = f jmAi
|m and we used the Lorentz gauge condition

Ai
|i = 0. The tensors Ri

r, Rri
j represent the Ricci tensor and the torsion

tensor [5].
The equation (52) represents the generalized D’Alembertain in the Fins-

lerian space-time in the framework of a tangent bundle.
When the gravitational field is absent the generalized wave equation is

given by
A

i|j
|j = 0 or f jmAi

|mj = 0 = �fA
i (53)

5 Conclusion

The observed anisotropy of the microwave cosmic rediation, represented by a
vector ka(x), can be incorporated in the framework of Finsler geometry. The
equations of geodesics are generalized in a Finsler anisotropic space-time.
The calculation of a curvature parameter of anisotropy is performed explic-
itly by the contraction of the Si

jkl curvature. Also, the Maxwell equations
are unaffected from the passage to the anisotropic geometry. The Lorentz
condition, as well as the generalized D’Alembertian, are shown to be invari-
ant under coordinate transformations. In our case, however, the generalized
wave equation includes the anisotropic vector through the Li

jk coefficients
and the metric tensor fij .
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Some concluding ideas

• Finsler geometry corresponds to the geometry of space and motion.
• The most important tensors in Finsler geometry are those which reduce
to zero in the Riemannian case (e.g. Cijk tensor), or those which have
analogues in Riemannian geometry.

• Important points are to consider non-Riemannian Finsler spaces and
to know to what extend Finsler spaces from Riemannian ones.

• In anisotropic phenomena the geometrical framework of the Rieman-
nian space-time are not sufficient. The most convenient metric geome-
try is the Finsler geometry.

• The electromagnetic field is incorporated in the Finsler geometry (uni-
fied gravitational field) and the paths of charged particles are the
geodesics of the space in the contrast to the Riemannian space-time.
The equivalence principle under these circumstances can be extended.

• The deviation of geodesics in a Finslerian space-time smoothly extends
the concept of the deviation of geodesics of the Riemannian space-time
and reveals a physical meaning to Finslerian space-time. Moreover
the deviation of geodesics is connected with the study of gravitational
waves by considering a Finsler type weak metric analogously with the
Riemannian standpoint.

Some useful Finslerian or generalized Finsle-

rian metrics for general relativity and gauge

theories.

1. fij(x, y) = e2σ(x,y)gij(x)

2. fκλ = nκλ + kBκBλ Beil metric

3. fij(x, y) = aij(x, y(x)) + Cijky
k +O()

Finslerian static gravitational field: Cijk =
1

2

∂gij

∂yk
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4. fij(x, y) = (nij + εij(x))︸ ︷︷ ︸
aij (x)

+h(x, y)

Weak Finslerian gravitational field convenient for the study of gravita-
tional waves (traveling tidal forces).

5. F (x, y) =
√

aij(x)yiyj + φ(x)k̂ay
a

Finslerian anisotropic model of space-time.

Metric 1. Has been studied by Tavakol and Van-Den Bergh [13]. They
proved that the conditions Ehlers-Pirani-Schild are satisfied and the structure
of the universe of the conventional general relativity is preserved if someone
uses the metric 1.

Metric 2. Beil metric for the study of unified gauge field theory [14].
Metric 3. Asanov’s book for Finslerian static gravitational field [1].
Metric 4-5. P.C. Stavrinos [15], [10].
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Open problems

1. Remark-Problem
In a constant Riemannian curvature space we can calculate the quantities

kay
a from the solution of the deviation of geodesics.

δ2kβ

δu2
− K(kay

a)yβ = 0 ya =
dxa

dt
(54)

Solutions:

kay
a =

1

2
u2KCD + Au +B K, A, B, C, D : const. (55)

We can enter the terms from (55) in the anisotropic Finslerian space-time
of metric

F (x, y) =
(
aij(x)y

iyj
)1/2

+ φ(x)k̂ay
a (56)

where φ(x)k̂a = ka.
If we get special coordinates in the pseudo-Riemannian space of constant

curvature and we also get a space of constant curvature Berwald type

Hijkl = K (fikfjl − filfjk)

we ask what type equations we can get in order to explain the anisotropic
part of the background microwave radiation in the framework of a Finslerian
(anisotropic) space-time of constant curvature? The analogous standpoint
valids in the Riemannian space when the Riemann curvature is constant. It
is connected with the equations of the background radiation of an isotropic
universe.

2. In Finslerian approach the curvature of Finsler space-time is charac-
terized by the tensors F i

jkl, P
i
jkl, K

i
jkl. (In the Riemannian space there is only

one Ri
jkl). Thus, the question arises when it is possible to find a full inter-

pretation of the curvature of a Finsler space in terms of geodesics deviations.
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[2] W. Kopczyński, An Anisotropic Universe With Torsion, Physics Letters,
43A (1973).

[3] L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields fourth
edition, Butterworth Heinemann, 1975.

[4] R. Miron, S. Watanabe, S. Ikeda, Some Connections on Tangent Bun-
dle and Their Applications to the General Relativity, Tensor, N.S., Vol.
46(1987).

[5] R. Miron and M. Anastasiei, The Geometry of Lagrange Spaces: Theory
and Applications, Kluwer Academic Publishers.

[6] C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation, W.H. Freeman
and Company, 1970.

[7] B. Nodland and J.P. Ralston, Indication of Anisotropy in Electromag-
netic Propagation over Cosmological Distances, Phys. Rev. Lett. 78,
3043 (1997).

[8] Peebles, P.J.E., The Large Scale Structure of the Universe, Princeton
University Press, Princeton, 1980.

[9] R.M. Wald, General Relativity, The University of Chicago Press, 1984.

[10] P.C. Stavrinos, P. Diakogiannis, A Geometrical Anisotropic Model of
Space-Time Based on Finslerian Metric, Workshop of Applied Differen-
tial Geometry and General Relativity, Thessaloniki, Greece (2001).

[11] R.B.Partridge, Background Radiation, Cambridge Astrophysics Series,
Cambridge University Press, 1995.

[12] M. Matsumoto, Foundations of Finsler Geometry and Special Finsler
Spaces, Kaiseisha Press. Jap. (1986).

16



[13] R.K. Tavakol, N. Van-Den Bergh, Viability Criteria for the Theories of
Gravity and Finsler Spaces, General Relativity and Gravitation, Vol. 18,
No. 8, 1986.

[14] R.G. Beil, Electrodynamics from a Metric, International Journal of The-
oretical Physics, Vol. 26, No. 2, 1987.

[15] P.C. Stavrinos, Deviation of Geodesics and Gravitational Waves in
Finsler Spaces. To be published (in 2002) Rev. Bull. Calc. Math. So-
ciety.

17


