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1. Introductory biological background

Genome= the total collection of genetic material in the chromosomes of an
organism.

DNA= a double stranded molecule made out of two complementary strands
of equal length containing four bases: adenine (A), guanine (G), cytosine (C) and
thynine (T), held together (quite strongly) by hydrogen bands.

mRNA= the twin sister of a single stranded DNA: it keeps the same A, C, G
bases while T (thynine) is replaced by U (uracil).

Protein= a sequence of amino acids (20 types).
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2. Central Dogma of Molecular Biology

What is a gene?

The unit of hereditary information that occupies a fixed position (locus) on
chromosomes (Encyclopedia Britannica).

A gene is a segment of DNA together with a transformation
to a segment (s) of mRINA (A. Carbone and M. Gromov, [CG)).

-alternative splicing in eukariotic cells, i.e. the same segment of DNA may
lead to the production of different mRNAs

-overlapping genes, i.e. different segments of mRINA are produced from
overlapping segments of DNA.

DNAngNAgprotein

gene = (G o F)™!(protein)
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3. Differential equations

Feedback function f{u)

DNA v mRNA Protein

h 4
h 4

U

Degradation

where the variables r = r(t), p = p(t) are functions of time, and:

n The number of genes in the genome.

r mRN A concentrations, n-dimensional vector-valued functions of ¢.

P Protein concentrations, n-dimensional vector-valued functions of ¢.
f(p) Transcription functions, n-dimensional vector polynomials on p.

L Translations constants, n x n nondegenerate diagonal matrix.

V Degradations rates of mRN A’s, n X n nondegenerate diagonal matrix.
U Degradations rates of Proteins, n x n nondegenerate diagonal matrix.

d2
e mRNA production: %: +2G(r,7) =0,
2

d
e Protein production: %]2) +2H(p,p) = 0.

1 2 d(L‘l 2 dl’Z 2
Finslerian e:mmple: F2 — %eZ(QI +8z°) |:< 5 ) _|_< 7 ) :| (Volterra—Hamilton

system).



4. Michaelis-Menten kinetics

o Enzyme
o Substrate
o Biochemaical reactions
assoctation : two proteins combine together to form a complex

disassociation : a substrate splits in two reaction products: an enzyme and
a product.

k1
S+E = SEXp L1 E,
k_1

S : substrate; E : enzyme (catalyst); P: product,
k1,k_1, ks constant rate parameters.

e Law of mass action

ds de

= —kies + k_qc, = —kies + (k—1 + ka)c,
dc d

a = kles — (k_l + kz)c, d_lt) = k‘QC.

s,e,c,p : concentrations of the reactants S, E, SE, P.
¢ Phase plane analysis.
e Hopf bifurcation and limit cycles.



5. SIBIL: a software for simulations of biological systems

The Holy Grail of Molecular Biology: construct faithful mathematical model of
living cell (genes, proteins, protein complexes, mRNA, etc.).
¢ System architecture.

Client PC (Windows)
CONVERTER

\u

Server (Linux machine)

SOLVER

(@

Differential
.. Equations ./

Auto Generation of the
Sunulation Source Code

\/

Executton of the Simulation
Fourth Order Runge-Kutta,Gear, etc

= @
Sunulation Result
ext File

~», Tim_¢ Per_c¢
. Tim_
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6. Differential system in Drosophila

<00p>p
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—d- Per,
s g e
dTCZ"C = Sy Timm — Ay - Per, - Tim. + Ay - PT, — Dy - % —d-Time
d]:th AvPere-Time = 4o PT = Vi P+TPT th Kgf—)l—T;Tn
_ D5% —d - PT,
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@ o L (CCC§3+ (PTn>’“ ~ D e, 4Gl
O Ry
gﬁ —d-cc,
e — 4 Clky — Ay Clk, - Cyee + Ay OC, — Dy % —d-Clk,,

where we have 10 variables of time

Timy,, Pery,, Clky,, mRNAs

Tim., Per.,Clk,, proteins translated from mRNAs
PT,., PT,,CC.,CC,, protein complexes
Dbt., Cyc,, catalysts, (i.e. constants)

and 56 constant parameters S, ..., Sg; D1, ..., D1o; A1, ..., Ay; By, By, B3; C1,Cs,
03;l\fl,Nl,Ol,Pl,Ql,Rl,I{l,...,I&’4;L1,...,Llo;Vl,...,V4;0,p,q,T,m,n,d.
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7. A simple example: Tyson’s Model for the Cell Division
Cycle

o Cell cycle

G S |G M
I ARIE
—_————

interphase  division

e Early embryonic cell cycle

Y=Y g

e Maturation promoting factor (MPF') peaks abruptly at metaphase (M).

cyclin + ¢de — M PF.

e The cell cycle requlatory pathway.

M c2
. O
active s celc2
O -
YP
phospherylated_cde2
P
+—0 i
+—0
\ Oy
(D: » cyclin
p
preMPF O:P

phosphorylated_cdc2

12



¢ Differential system of cell cycle regulatory pathway.

d
%:kG-M—kS-P-C’Q—l—kg-CP

dCP
%:—kg-C’P-Y—I—kg-P-C’Q—kg-C’P

dpM
Zt —ky-CP-Y —pM-F(M)+ks - P-M

dM
#:pM-F(A/_f)—k5-P-M—k6-M
%:kl-aa—kQ-Y—kg-CP-Y

dY P
7:]661\4—1{?7YP,

M
where F(M) =k + kz;m.

e Tyson model.

% = (v —u)(k + kqu?) — keu
dv

— =k —k

dt 1 6U,

u and v are the relative concentration of active MPF and total cyclin minus de-
graded cyclin relative to total cdc2, respectively.

Parameter ranges:

k:= 0.018 min~! rate constant for the dephosphorylation of cdec2,

ki:= 0.015 min~! rate constant of cyclin synthesis,

ky: = 10 - 1000 min~' (adjustable) constant describing the auto catalytic acti-
vation of MPF by the dephosphorylation of ede2,

ke:= 0.1 - 10 min~ ' (adjustable) constant describing breakdown of the active
cde2-cyclin complex.
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8. The KCC Theory
Find the basic invariants of the SODE

d*z <
7 +g'(z,2,t) =0, 1 €{1,2,...,n},
z(to) = xo,%(to) = 20, (z,3,t) €QCR" xR" x R!
under the nonsingular coordinate transformation
i = fi(z',...,2"), 1 € {1,2,...,n},
t=1.

o KCC-covariant differential
D¢ det 1,
prai i LA

7.7 partial differentiation with respect to z.

o First KCC- invariant

Di' 1 ;..
= — (. — = &
a0t 29,r$ g
Lemma. The functions g' = g'(x,2,t) are 2 homogeneous in i if and only if
el = 0.

Variation of the trajectories into nearby one
7i() = (1) + E(t)n.

The variational equations

d2€i ] dfr )
gz T gy T =0,
7.7 indicates partial differentiation with respect to z”.
szl _ Pigr
ez
where ‘
4 4 1 1., 1. 1dg';
P; =—9';— §9r91;r;j + 2 HARSTIE Zgl;rgr;j + 2 ot

The Second KCC-invariant of the system or deviation curvature tensor.
The third, fourth and fifth invariants are:
i [Py i
ik = 5( ik — Prij)s

G pi
Bj'ke = Rjp.y,

Dj'ke = gljsksr-
A basic result of the KCC-theory is the following
Theorem A. Two SODE’s on §) can be locally transformed, one into the other, if
and only if thewr five KCC-invariants ', P}, Ry, Bj'ke,
D;'k¢ are equivalent tensors. In particular, there are local coordinates (z) for which

g'(z,7,t) =0 if and only if all five KCC-tensors vanish.
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9. Stability of trajectories

e Linear stability: the Liapunov stability of the steady states.

Theorem B. If a first order system has steady state (xo,yo0), it is stable iff the
real part of the eigen values of its Jacobian at (xo,yo) are strict negative. If the
eigen values have only imaginary part, then (xq,yo) ts neutrally stable, otherwise it
18 unstable.

e Jacobi stability: the Liapunov stability of the whole trajectories, or transient
states.

Theorem C. The trajectories of the SODE are JACOBI STABLE uff the real
parts of the eigenvalues of the dewviation curvature tensor (P]’) are strict negative

everywhere in 2, otherwise it 1s JACOBI UNSTABLE.

The eigenstructure of the deviation curvature tensor Pl-j is an alternative to the

classical Floquet theory, with the eigenvalues of Pij replacing the Floquet exponents.
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10. The one dimensional case
Let us consider the FODE
it = F(2', 2?), i* = G(a', 2?)
and let us assume that we can eliminate one variable so that we obtain the SODE

T = Y, y = _gl(x7y)7

with a steady-state given by (zg, 0).
The variational equation

£+ (gh)o £+ (gh)o £=0,

The coefficients are evaluated at some fized reference trajectory (zo(t), yo(t)) and
are functions of the parameter along this curve, ¢.
e Second invariant: P! = —g!, — %glg;ll;l + %yg}m + ig}lg;ll.

Consequence.

a. The trajectories of SODE are Jacobi stable in Q if and only if P} < 0 everywhere
in Q. This 1s equivalent to periodic deviation for the FODE.

b. The trajectories are Jacobi unstable in Q if and only if P! > 0 everywhere in Q.
This 1s equivalent to aperiodic deviation for the FODE.

e Linear stability analysis of the steady states.
e Jacobi stability analysis of the whole trajectories.
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11. Jacobi stability for cell cycle
¢ Tyson model (FODE)

d

d—? =(v—u)(k+ k4u2) — kgu
dv

— =k —k

dt 1 6U,

u and v are the relative concentration of active MPF and total cyclin minus de-
graded cyclin relative to total cdc2.
e The associated SODE

Z+g(r,y) =0,
where z = v, y = dz/dt and
(4.2) g=Ay* +(Bz+C)y*’ +(Dz+E)y+Fz +G.

The constants A, B,C, D, E, F,G can be expressed by means of the parameters
ki,kgy. ...

The embrionic cell development can be described by the Jacobi stability
analysis of production of the total cyclin (relative to the total ede2).

The second invariant for the Tyson model:

P} :—%A2y4—|—(—ABa:—AC’)y3—I—(—gEA—gDAa;)y2

1 1
—I—(—§D—3FA:1:—3GA)y—I—(ZD2—FB)J:2

1 1
—|—(—GB—|—§DE—FC)1;—F—GC—I—ZE2

Remark.

The variational equation, D?¢! /dt? = P! ¢!, indicates that the deviation will be
periodic, as for the simple harmonic oscillator, if P} < 0, and aperiodic otherwise,
as for the wave-guide equation (similar to an harmonic oscillator with reverse sign),
where the trajectories diverge.

e The final expression for P/

3 ka?yt ks z k4 ky
Pl =-—= + (- +3 K
1 4 k64 ( k63 k64 )y
Elkiz 1 6kyke® +6kykke? +18ky” ky?
-|-(34 31”1?__ 4 ke + 0Ky 46‘|‘ 4 1)y2
ke 4 ke
( 1 (12ke kd* kr® + 12ka ke’ k)
4 ket
1 —16ky by ke® — 12ks" ky® — 12k oy k kg” )
- = Jy —kakx
4 ket
1 (—4keka® kr® —12ka ke’ ki k) @
4 ket
12k k 4+ 3k 2 kit +10ks® kg ky? — k2 kg + 6 kg ky2 ki ke? — ke®
4 ket
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Numerical results 1.
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Figure 2. This graph shows P! (zg, yo) at the steady-states for kg € [0.1, 10].
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Figure 3. This graph shows P/(zo, yo) at the steady-states for k¢ varying
within region A. The deviation vector is aperiodic for most of the range. Note that
it becomes periodic for kg values close to the B range.
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Figure 4. This graph shows P](xqg, yo) at the steady-states for kg varying
within region B. The deviation vector is periodic for all of the range.
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Figure 5. This graph shows P](xq, yo) at the steady-states for ks varying
within region C. The deviation vector is aperiodic for most of the range.

19



Numerical results I1.
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Figure 7. This graph shows P} against z and y for k4=180 and
k6=0.1924781307, the unique kg-value within region A such that P](zo, yo) = 0 at
the steady-state (z = 0.09143007729, y = 0).
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Figure 8. This graph shows P} against z and y for k=180 and
k6=0.2911043274, for which P} (zo, yo) (Figure 3) is most negative (associated with
the limit cycle in the model), corresponding to the point (2o = 0.08177456483, yo =
0, P! = —0.1316018785) in this graph.
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Figure 9. This graph shows P against z and y for k=180 and ks=1.460381230,
for which P} (2o, yo) (Figure 3) has its second minimum point (associated with the

excitable switch in the model), corresponding to the point (2o = 0.4157874576, yo =
0, P} = —0.0540182526) in this graph.

Figure 10. This graph shows P against x and y for k4=180 and
k6=1.900932822, the unique kg-value within region C such that P} (zo, yo) = 0 at
the steady-state (z = 0.5214518040, y = 0).
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12. Conclusion

¢ Linear stability analysis.
o Mode A-Linear Stability: steady state of high MPF activity that corresponds
to the metaphase arrest of unfertilized eggs.
e Mode B-Linear Unstability: autonomous oscillations (limit cycle) that cor-
responds to rapid cyclin gin early embrios.
o Mode C-Linear Stability: excitable steady state with low MPF activity that
corresponds to the interphase arrest of resting cells.

Region A Region B Region C
. stable ! stable unstable stable stable
Linear ! '
stability
- +++ - | - >
0.1 io.wz hz .5 1.9 0 >
++H+ - | +++
Jacobi
stability ! !
aperiodid periodic | periodic periodic aperiodic

e Jacobi stability analysis.

e Mode A: Jacobi stability for almost all values of kg, but become instable
near the boundary with mode B.

The egg stops developing as usual and dies away.

e Mode B: Jacobi unstability with two distinct local minima, one corresponding
to the limit cycle of the system (the deepest one) and the other corresponding to
the cell excitable switch. The instability region is larger than initialy estimated by
linear stability analysis.

e Mode C: Jacobi stability for almost all values of kg, but become instable
near the boundary with mode B.

The cell is perturbed out the basin of attraction and it dies away or it divides
endlessly.

Remarks. ‘
e Estimation of the eigenvalues of P/ at a certain point gives the behavior of
the trajectories in a neighbourhood of that point.
e Jacobi stability analysis gives a more accurate picture of cell growth than
the linear stability analysis alone.
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Future work.

The process of cell development investigation and drug design.

Biological mechanism

DB, literature, etc.

b

. Pathway

b

Differential equations (FODE) ———» Numerical solution

.

Linear stability

——* Hopf bifurcation, limit cycle

(BIFOR2)
h
Jacobi stability Cell development analysis
No » Output
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Open problems.

1. Biological meaning of the geometry associated to a SODE (in the sense of
Bryant or Foulon)?

2. What kind of mathematics do we need to get a fightfull picture of the cell
that can be implemented as a software?
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