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Abstract

In this paper, we give some historical remarks
on the Randers metrics and introduce the im-
portant roles of Randers metrics in studying
the Finsler metrics of constant curvature. At
the same time, we discuss some special curva-
ture properties of Randers metrics, including
the mean Berwald curvature, the mean Lands-
berg curvature and the mean Cartan torsion.
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1 Historical Remarks on The Randers Met-

rics

Randers metrics are among the simplest Finsler met-
rics. They are expressed in the form

F = α + β,

where α :=
√

aij(x)yiyj is a Riemannian metric on a dif-

ferentiable manifold M and β := bi(x)yi is a 1-form on
M with

‖β‖α(x) := supy∈TxM |β(y)|/α(y) < 1

for any point x ∈ M . Randers metrics were first in-
troduced by physicist G. Randers[R] in 1941 from the
standpoint of general relativity. Later on, these metrics
were applied to the theory of the electron microscope
by R. S. Ingarden in 1957, who first named them Ran-
ders metrics. Up to now, many Finslerian geometers
have made a great of efforts in investigation on the
geometric properties of Randers metrics.

• 1974, M. Matsumoto: F = α + β is a Landsberg
metric if and only if β is parallel with respect to α,
namely,

bi|j :=
∂bi

∂xj
− bkγ

k
ij = 0, (1)

where γk
ij denote the Christoffel symbols of α.

• 1979, S. Kikuchi[Ki]:

A. a Randers metric F = α + β is a Berwald metric
if and only if β is parallel with respect to α.

B. a Randers metric F = α+β is locally Minkowskian
if and only if α is flat and β is parallel with respect
to α.
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• 1997, S. Bácsó and M. Matsumoto[BaMa]: a Ran-
ders metric F = α + β is a Douglas metric if and
only if β is a close 1-form. We note that, for a
Randers metric F = α + β, β is close if and only if
F = α + β is pointwise projective to α . From this,
we can easily see that, a Randers metric F = α + β
is a projective flat Finsler metric if and only if β is
close and α is locally projectively flat.

One of the fundamental problem in Finsler geometry
is to study and characterize Finsler metrics of constant
flag curvature ( the flag curvature in Finsler geometry
is an analogue of the sectional curvature in Riemannian
geometry). Of course, Finslerian geometers are very
concerned with the conditions that a Randers metric
is of constant flag curvature.

• 1977, H. Yasuda and H. Shimada[YS]: a Randers
metric F = α+β is of constant flag curvature λ > 0 if
and only if β is a Killing 1-form of constant length
with respect to α with additional conditions.

• 2001, Z. Shen[Sh1]: considered the conditions that
a Randers metric is of constant flag curvature again
and gave a condition that a Randers metric is of
constant Ricci curvature.

• 2001, D. Bao and C. Robles[BaRo]: gave an equiv-
alent condition for Randers metrics to be of con-
stant curvature.

• An interesting problem is: under what conditions,
must a Finsler metric with flag curvature K = 0 be
locally Minkowskian? H. Akber-Zadeh[AZ] proved
that any positively complete Finsler metric with
K = 0 must be locally Minkowskian if its first and
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second Cartan torsions are bounded. Fortunately,
for Randers metrics, the first and second Cartan
torsions satisfy

‖C‖ <
3√
2
, ‖C̃‖ <

27

2

respectively[BaChSh][Sh2][Sh3]. Hence, if F = α +
β is a positively complete Randers metric, then
K = 0 if and only if F is locally Minkowskian[Sh3].

• 2001, Z. Shen[Sh4]: classification of locally projec-
tively flat Randers metrics with constant flag cur-
vature.
Theorem 1.1. Let F = α + β be an n-dimensional
Randers metric with constant curvature K = λ.
Suppose that F is locally projectively flat. Then
F is either locally Minkowskian (λ = 0) or after a
scaling, isometric to a Finsler metric on the unit
ball Bn in the following form

Fa =

√
|y|2 − (|x|2|y|2− < x, y >2)

1− |x|2 ±< x, y >

1− |x|2 ±
< a, y >

1+ < a, x >
,

(2)
y ∈ TxR

n,

where a ∈ Rn is a constant vector with |a| < 1. The
Randers metric in (2) has the following proper-
ties: (a)K = −1/4; (b)S = ±1

2(n + 1)Fa; (c)E = ±1
4(n +

1)F−1
a h; (d)J± 1

2FaI = 0 and (e) all geodesics of Fa are
straight lines , where h denotes the angular metric
of Fa and S,E,J and I denote the S-curvature , the
mean Berwald curvature, the mean Landsberg cur-
vature and the mean Cartan torsion, respectively.

Remark 1.1 By Theorem 1.1, every locally projectively
flat Randers metric with K = 0 must be locally Minkow-
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skian.
Example 1.1([Z. Shen,2001,[Sh7]) Let

F (x, y) =

√
(1+ < a, x >)2|y|2 − 2(1+ < a, x >) < a, y >< x, y > + < a, y >2 |x|2

(1+ < a, x >)2

+
(1+ < a, x >) < b, y > − < a, y >< b, x >

(1+ < a, x >)2 , y ∈ TxR
n,

where a, b ∈ Rn and |b| < 1. Then F is a projective Ran-
ders metric with K = 0. Hence, F is a locally Minkowski
metric.

2 The important roles of Randers metrics in

studying the Finsler metrics of constant

curvature

Beltrami shows that a Riemannian metric is locally
projectively flat if and only if it is of constant curva-
ture. A natural question arises: for a Finsler metric, is
this still true?

All of the known non-Riemannian Finsler metrics
with constant curvature:

Part I. Projectively flat Finsler metrics

• Hilbert-Klein metric on a strongly convex domain
Ω ⊂ Rn: complete, reversible, K = −1.

• Funk metric on a strongly convex domain Ω ⊂ Rn:
positively complete, non-reversible, K = −1/4.

• Bryant metrics(1995) on S2 or Sn: non-reversible,
K = 1.
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• Shen metric(2001,[Sh7]) on Bn ⊂ Rn: non-reversible,
K = 0.

Part II. Non-projectively flat Finsler metrics

• Bao-Shen metrics(2000, [BaSh]): the first family
of non-projectively flat Finsler metrics on S3 with
K = 1. Their examples are in the form F = α + β,
which just are Randers metrics.

• Shen’s metrics(2001, [Sh3][Sh5]): non-projectively
flat Finaler metrics with constant curvature K =
−1, 0, 1, respectively. All of Shen’s these metrics
are still in the form F = α+β. Shen’s main method
is so-called the shortest time problem[Sh3], a math-
ematical model characterized by Randers metrics.

So, we may say that Randers metrics play an very im-
portant role in knowing the geometric structures and
properties of Finsler metrics with constant curvature.

The following are the non-projectively flat Randers
metrics with K = −1, 0, 1 respectively, constructed by
the second author. See [Sh3][Sh5] for more details.

We know that Minkowski spaces are Finsler spaces
with K = 0. According to [AZ], any positively complete
Finsler metric with K = 0 must be locally Minkowskian
if its first and second Cartan torsions are bounded. A
natural question is: are there any positively complete
non-Minkowskian Finsler metrics with K = 0? This
problem remains open. Firstly, we give the following
Theorem 2.1.([Sh3]) Let n ≥ 2 and

Ω := {p = (x, y, p̄) ∈ R2 ×Rn−2|x2 + y2 < 1}.
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Define

F (y) :=

√
(−yu + xv)2 + |y|2(1− x2 − y2)− (−yu + xv)

1− x2 − y2 ,

(3)
where y = (u, v, ȳ) ∈ TpΩ = Rn and p = (x, y, p̄) ∈ Ω. Then
F is a Finsler metric on Ω satisfying K = 0, S = 0.

A easy computation shows that the Randers metric
in (3) is not Douglas metric, hence not locally projec-
tively flat. Therefore, it is not locally Minkowskian.
Because Randers metrics have bounded first and sec-
ond Cartan torsions, the Randers metric in (3) is not
positively complete.

Now, let us describe our another example. Let <,>
denote the standard Riemannian metric on S2 and x
denote the vector field on S2 defined by

xp := (−y, x, 0) at p = (x, y, z) ∈ S2.

Let F := α + β, where α = α(y) and β = β(y) are given
by

α :=

√
ε2 < x,y >2 + < y,y > (1− ε2 < x,x >)

1− ε2 < x,x >
, (4)

β := − ε < x,y >

1− ε2 < x,x >
,

where ε is an arbitrary number. F is defined on the
whole sphere for |ε| < 1 and it is defined only on the
open disks around the north pole and south pole with
radius ρ = sin−1(1/|ε|) for |ε| ≥ 1. Note that when ε = 0, F
is the standard Riemannian metric on S2.
Theorem 2.2([Sh5]) Let F = α+β be the Finsler metric
on S2 defined in (4). It has the following properties
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(i) K = 1;
(ii) S = 0;
(iii) F is not locally projectively flat unless ε = 0;
(iv) the Gauss curvature K̄ of α is not a constant un-

less ε = 0,±1. When ε = 0, K̄ = 1; when ε = ±1, K̄ = −4
Remark 2.1 We know that when a Randers metric
F = α+β is locally projectively flat, α is of constant cur-
vature. However, for the Finsler defined in (4), when
ε = ±1, K̄ = −4 and F is not locally projectively flat.

Similarly, let <,> denote the standard Klein metric
on the unit disk D2 and x denote the vector field on D2

defined by

xp = (−y, x) at p = (x, y) ∈ D2.

For an arbitrary number ε, let F := α+β, where α = α(y)
and β = β(y) are given by

α :=

√
ε2 < x,y >2 + < y,y > (1− ε2 < x,x >)

1− ε2 < x,x >
, (5)

β := − ε < x,y >

1− ε2 < x,x >
.

F is a Finsler metric defined on the disk D2(ρ) with
radius ρ = 1/

√
1 + ε2. Note that when ε = 0, F is the

Klein metric on the unit disk.
Theorem 2.3([Sh5]) Let F = α + β be a Finsler metric
on the disk D2(ρ) defined in (5). It has the following
properties:

(i) K = −1;
(ii) S = 0;
(iii) F is not locally projectively flat if ε 6= 0;
(iv) the Gauss curvature K̄ of α is not constant unless

ε = 0. When ε = 0, K̄ = −1.
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Remark 2.2 Although the Randers metrics defined in
(5) is of negative constant curvature, the Riemannian
metric α is not of negative constant curvature when
ε 6= 0.

3 Some special curvature properties of Ran-

ders metrics

The Funk metric on a strongly convex domain Ω in Rn

has many special curvature properties: (a)K = −1/4; (b)S =
±1

2(n + 1)F ; (c)E = ±1
4(n + 1)F−1h; (d)J ± 1

2F I = 0 and (e)
all geodesics of F are straight lines. When Ω is just the
unit ball Bn in Rn, the Funk metric

F =

√
|y|2 − (|x|2|y|2− < x, y >2)

1− |x|2 ± < x, y >

1− |x|2 , y ∈ TxR
n.

(6)
The Funk metric in (6) is a special Randers metric.
Motivated by the properties of Funk metrics, we want
to see whether Randers metrics have the properties
same as that of Funk metrics.

Firstly, we briefly recall the definitions of the mean
Berwald curvature, the mean Cartan torsion and the
mean Landsberg curvature. For a non-zero vector y ∈
TpM , the mean Berwald curvature Ey = Eij(x, y)dxi⊗dxj :
TpM × TpM → R is defined by

Eij :=
1

2

∂3Gm

∂ym∂yi∂yj
(x, y). (7)

The mean Cartan torsion Iy = Ii(x, y)dxi : TpM → R is
defined by

Ii :=
1

4
gjk[F 2]yiyjyk =

∂

∂yi

[
ln

√
det(gjk)

]
. (8)
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⇐⇒ Ii = gjkCijk.

Further, for a non-zero vector y ∈ TpM , the mean Lands-
berg curvature Jy = Ji(x, y)dxi : TpM → R is defined by

Ji := −1

2
FFylgjk ∂3Gl

∂yi∂yj∂k
. (9)

⇐⇒ Ji = gjkLijk.

Now, let F = α + β be a Randers metric on a mani-
fold M with ‖β‖α(x) := supy∈TxM |β(y)|/α(y) < 1. An easy
computation yields

gij := [
F 2

2
]yiyj =

F

α

(
aij − yi

α

yj

α

)
+

(
yi

α
+ bi

) (
yj

α
+ bj

)
, (10)

where yi := aijy
j. By an elementary argument in linear

algebra, we obtain

det(gij) =

(
F

α

)n+1

det(aij). (11)

Define bi|j by

bi|jθj := dbi − bjθ
j
i ,

where θi := dxi and θj
i := Γ̄j

ikdxk denote the Levi-Civita
connection forms of α. Let

rij :=
1

2
(bi|j + bj|i), sij :=

1

2
(bi|j − bj|i),

si
j := aihshj, sj := bis

i
j, eij := rij + bisj + bjsi.

Then the geodesic coefficients Gi are given by

Gi = Ḡi +
e00

2F
yi − s0y

i + αsi
0, (12)
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where Ḡi denote the geodesic coefficients of α, e00 :=
eijy

iyj, s0 := siy
i and si

o := si
jy

j.
For a Randers metric, the S-curvature is given by

S := (n + 1)

{
e00

2F
− s0 − dρ(y)

}
, (13)

where ρ := ln
√

1− ‖β‖2
α(x) [ChSh][Sh3][Sh6]. It is easy

to see

Eij =
1

2
Syiyj .

We have the following
Lemma 3.1 Let F = α + β be a Randers metric on a
manifold M . For a scalar function c = c(x) on M , the
following are equivalent:

(a) S = (n + 1)cF ;
(b) e00 = 2c(α2 − β2).

Proof. From (13), we see that S = (n + 1)cF if and only
if

eij = (si + ρi)bj + (sj + ρj)bi + 2c(aij + bibj), (14)

si + ρi + 2cbi = 0. (15)

Similarly, e00 = 2c(α2− β2) is equivalent to the following
identity

eij = 2c(aij − bibj). (16)

From these, we can prove the equivalence. Q. E. D.
On the other hand, we have the following

Lemma 3.2 Let F = α + β be a Randers metric on a
manifold M . For a scalar function c = c(x) on M , the
following are equivalent

(a) E = 1
2(n + 1)cF−1h;

(b) e00 = 2c(α2 − β2).
Proof. From (13) and Eij = (1/2)Syiyj , we have

Eij =
n + 1

4

[
e00

F

]

yiyj

. (17)
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Notice that hij := gij − FyiFyj = FFyiyj . So E = n+1
2 cF−1h

if and only if

Eij =
n + 1

2
cFyiyj . (18)

From (17),(18), we can prove the equivalence. Q. E.
D.

By Lemma 3.1 and Lemma 3.2, we have the following
Theorem 3.1 Let F = α + β be a Randers metric on a
manifold M . For a scalar function c = c(x) on M , the
following are equivalent:

(a) S = (n + 1)cF ;
(b) E = 1

2(n + 1)cF−1h.
Remark 3.1 For a Finsler metric F on an n-dimensional
manifold M , we say that F has constant E-curvature c if
E = 1

2(n+1)cF−1h. Similarly, we say that F has constant
S-curvature c if S = (n+1)cF . Theorem 3.1 shows that,
for a Randers metric F , it has constant S-curvature c
if and only if it has constant E-curvature c. However,
for a general Finsler metric, this conclusion is not true.
Recently, the second author has found an example with
the properties E = constant but S 6= constant.

Now, let us consider the mean Landsberg curvature
J. We have the following
Lemma 3.3 For a Randers metric F = α + β, the mean
Cartan torsion I = Iidxi and the mean Landsberg cur-
vature J = Jidxi are given by

Ii =
1

2
(n + 1)F−1α−2{α2bi − βyi}, (19)

Ji =
n + 1

4
F−2α−2{2α[(ei0α

2−yie00)−2β(siα
2−yis0)+si0(α

2+β2)]+

α2(ei0β−bie00)+β(ei0α
2−yie00)−2(siα

2−yis0)(α
2+β2)+4si0α

2β}.
(20)
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From Lemma 3.3, we can prove the following
Lemma 3.4 Let F = α + β be a Randers metric on a
manifold M . For a scalar functin c = c(x) on M , the
following are equivalent

(a) J + cF I = 0;
(b) e00 = 2c(α2 − β2) and β is close.
By Lemma 3.1 and Lemma 3.4, we immediately get

the following
Theorem 3.2 Let F = α + β be a Randers metric on a
manifold M . For a scalar function c = c(x) on M , the
following are equivalent

(a) J + cF I = 0;
(b) S = (n + 1)cF and β is closed.
There are lots of Randers metrics satisfying S = (n+

1)cF or J + cF I = 0. Besides the Randers metric in (6)
and the Randers metrics in (2) with c = 1/2, we give
the following
Example 3.1 For an arbitrary number ε with 0 < ε ≤ 1,
define

α :=

√
(1− ε2)(xu + yv)2 + ε(u2 + v2)(1 + ε(x2 + y2))

1 + ε(x2 + y2)

β :=

√
1− ε2(xu + yv)

1 + ε(x2 + y2)
.

We have

‖β‖α =
√

1− ε2

√√√√ x2 + y2

ε2 + x2 + y2 < 1.

Thus F = α + β is a Randers metric. By a direct com-
putation, we obtain

e00 = 2c(α2 − β2),
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where

c =

√
1− ε2

2(ε + x2 + y2)
.

Moreover,
J + cF I = 0.

But F does not have constant curvature.
We note that, in the properties of Randers metrics

in (2) and (6), the most fundamental properties are (a)
and (d). In fact, for the Randers metrics of constant
curvature which satisfy J+ cF I = 0, we have the follow-
ing classification theorem, that is
Theorem 3.3 Let F = α+β be a Randers metric of con-
stant curvature K = λ on a manifold M . Suppose that
F satisfies J + cF I = 0 for some scalar function c(x) on
M . Then λ = −c2 ≤ 0. F is either locally Minkowskian
(λ = −c2 = 0) or in the form (2) (λ = −c2 = −1/4) after
a scaling.
Proof. By Lemma 3.4 and the assumption J + cF I = 0,
we know that

e00 = 2c(α2 − β2) and β is closed.

Hence the Douglas curvature D of F vanishes. On the
other hand, by the assumption K = λ, we know that
the Weyl curvature W vanishes. Therefore, F is locally
projectively flat. So the theorem follows from Theorem
1.1. Q. E. D.
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4 A generalization of Theorem 3.3

Let (M,F ) be a Finsler manifold of dimension n. Fix a
local frame {ei} for TM . Let

τ(x, y) := ln




√
det(gij(x, y))

V ol(Bn(1))
· V ol{(yi) ∈ Rn|F (yiei) < 1}


 .

We call τ the distorsion[Sh6].
Theorem 4.1[ChMoSh] Let F be an isotropic Finsler
metric on a manifold M of dimension n. Suppose that
the mean Landsberg curvature J satisfies J+cF I = 0 for
some scalar function c(x) on M . Then the flag curvature
K and the distorsion τ satisfy

n + 1

3
K·l +

(
K + c2 − cxmym

F

)
τ·l = 0. (21)

Further,
(a) If c = constant, then (K + c2)

n+1
3 eτ is independent of

y ∈ TxM .
(b) If K = K(x) is independent of y ∈ TxM at some point
x ∈ M , then either Fx is Euclidean or c = constant and
K(x) = −c2 ≤ 0.

From Theorem 4.1, we see that, for any Finsler met-
ric F with flag curvature K = K(x) depending only on
x ∈ M , if it satisfies J + cF I = 0, then F is either Rie-
mannian or K = −c2 is a nonpositive constant. Ob-
viously, for a Randers metric of constant curvature
satisfying J + cF I = 0 for some c(x) on M , we have
K = constant = −c2 ≤ 0. Further, we have the following
Theorem 4.2 Let F = α + β be a Randers metric on
a manifold M of dimension n. Suppose that (1) flag
curvature K = K(x) is independent of y ∈ TxM ; (2)
J + c(x)F I = 0 (⇐⇒ S = (n + 1)c(x)F and β is closed).
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Then F is locally projectively flat and K = constant =
−c2 ≤ 0.
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OPEN PROBLEMS

1. Complete to classify Randers metrics with con-
stant curvature.

2. Complete to classify projectively flat (α, β)-metrics
with constant curvature.
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