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Background: Let Mn+1 be a connected, smooth manifold and
let Σ2n+1 ⊂ TM be a (generalized) Finsler structure on M :

Σ ι−−−−→ TM�π

M

⇒
O(n) ι−−−−→ F�π

Σ
First structure equations:

dω0 = − θ0j ∧ωj , (the Hilbert form)
dωi = θ0i ∧ω0 − θij ∧ωj − Iijk θ0k ∧ωj ,

dθ0i = −θij ∧ θ0j +R0i0k ω0 ∧ωk + 1
2
R0ijk ωj ∧ωk + Jijk θ0k ∧ωj

Constant Flag Curvature c: R0i0j = c δij . (⇒ R0ijk ≡ 0)

Question: How ‘general’ are these (gen.) Finsler structures?
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I will concentrate on the case c = 1 in this lecture.

Simplified structure equations:

dω0 = − θ0j ∧ωj

dωi = θ0i ∧ω0 − θij ∧ωj − Iijk θ0k ∧ωj ,

dθ0i = −ωi ∧ω0 − θij ∧ θ0j + Jijk θ0k ∧ωj

Prop: (B—, Bejancu & Farran) Let E be the Reeb vector field
on Σ (i.e., the vector field dual to ω0, the Hilbert form), then

ω1
2 + · · ·+ ωn

2 + θ01
2 + · · ·+ θ0n

2

is invariant under the flow of E.

Defn: Let Q be the space of integral curves of E. Say that Σ
is geodesically simple if Q has a Haus. manifold str. so that the
projection � : Σ→ Q is a smooth submersion.
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Theorem: (B—) The space Q is naturally a Kähler manifold with
Kähler metric and 2-form satisfying

�∗
(
dσ2

)
= ω1

2 + · · ·+ ωn
2 + θ01

2 + · · ·+ θ0n
2 ,

�∗
(
Ω

)
= − ωj ∧ θ0j = −dω0 .

Proof: Write ζi = ωi − i θ0i, so that

�∗(dσ2) = ζ1 ◦ ζ1 + · · ·+ ζn ◦ ζn , and �∗(Ω) = i
2
ζi ∧ ζi .

The structure equations imply

dζi = −iω0 ∧ ζi − θij ∧ ζj + i
2(Iijk + i Jijk) ζj ∧ ζk ,

so the Newlander-Nirenberg theorem implies that there is an in-
tegrable complex structure on Q for which {ζ1, . . . , ζn} spans the
�-pullbacks of the (1, 0)-forms.
Since �∗(Ω) = −dω0 is closed and � is a submersion, Ω is also

closed. Thus,
(
dσ2,Ω

)
defines a Kähler structure on Q. �

Remark: A Kähler structure is just a torsion-free U(n)-structure.
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A finer structure. Consider ζ =
(
ωi − i θ0i

)
= (ζi) : TF → Cn.

ζ(v) = 0 iff q′(v) = 0 for q : F → Σ→ Q (the composition).

Define υ(f) : Tq(f)Q→ Cn so that this diagram commutes:

TfF
ζf−→ Cn� ↗

Tq(f)Q

Prop: υ maps F into an open subset of an S1 ·O(n)-structure
on Q, where

S1·O(n) =
{
eiαA eiα ∈ S1 , A ∈ O(n)

}
⊂ U(n) ⊂ GL(n,C).

Prop: The S1·O(n)-structure is torsion-free iff Σ is Riemannian,
but the underlying S1·GL(n,R)-structure is always torsion-free.
Remark: For n > 1, the group S1·GL(n,R) ⊂ GL(2n,R) is not on
the accepted list of groups that can be holonomy of an irreducible
torsion-free connection in dimension 2n!
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The surface case: A double fibration:

Σ3

� ↙ ↘π

Q2 M2

�∗(dσ2) = ω1
2 + θ01

2 , �∗(Ω) = θ01 ∧ω1 .

Extra structure: The 1-form β:

∃β ∈ Ω1(Q) so that �∗β = −I111 ω1 + J111 θ01.

Prop: Let K be the Gauss curvature of dσ2. Then dβ = (1−K)Ω
and, for x ∈M , the curve Cx = �

(
π−1(x)

)
is a β-geodesic.

Defn: If (Q, dσ2) is an oriented surface, with area form Ω and β

is a 1-form on Q, a curve C ⊂ Q is a β-geodesic if κC dsC = C∗β .
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Σ3

� ↙ ↘π

Q2 M2

Prop: (Converse) If (Q, dσ2,Ω, β) satisfies dβ = (1−K)Ω and if
� : Σ → Q is the dσ2-unit sphere bundle, then Σ is foliated by
β-geodesics and the leaf space M carries a canonical (generalized)
Finsler structure of constant flag curvature +1.

Cor: (Local generality) The Finsler surfaces of constant flag cur-
vature +1 depend on two arbitrary functions of two variables, up
to diffeomorphism.

Prop: (Global) If (S2, dσ2,Ω, β) satisfies dβ = (1−K)Ω and if all
of the β-geodesics are closed, then it comes from a global Finsler
structure with constant flag curvature +1 on M = S2.
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Lemma: Let (Q, dσ2,Ω, β) be an oriented surface with 1-form
and L a positive function on Q. Set

dσ̃2 = Ldσ2, Ω̃ = LΩ, β̃ = β + ∗d(log
√
L).

Then the β̃-geodesics with respect to
(
dσ̃2, Ω̃

)
are the same as the

β-geodesics of
(
dσ2,Ω

)
.

Lemma: Let Q be a surface endowed with a metric dσ2 with
Gauss curvature K > 0 and area form Ω. Then the data

dσ̄2 = K dσ2 , Ω̄ = K Ω , β̄ = ∗d
(
log
√
K

)
,

satisfy dβ̄ = (1 − K̄) Ω̄, where K̄ is the Gauss curvature of dσ̄2.

Theorem: If dσ2
0 is a Zoll metric on Q = S2 with area form Ω0

and positive Gauss curvature K0. Let M � S2 be the space of
oriented dσ2

0-geodesics on Q. Then the data

dσ2 = K0 dσ2
0 , Ω = K0 Ω , β = ∗d

(
log

√
K0

)

come from a Finsler metric onM with constant flag curvature +1.
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Higher dimensions. From now on, assume n > 1.

Recall the structure equations of the O(n)-structure u : F → Σ:

dω0 = − θ0j ∧ωj

dωi = θ0i ∧ω0 − θij ∧ωj − Iijk θ0k ∧ωj ,

dθ0i = −ωi ∧ω0 − θij ∧ θ0j + Jijk θ0k ∧ωj

and how ζ = (ζi) =
(
ωi − i θ0i

)
defines a S1·O(n)-structure on Q:

An f ∈ F defines an isomorphism υ(f) : Tq(f)Q→ Cn. Although

dζi = −iω0 ∧ ζi − θij ∧ ζj + i
2(Iijk + i Jijk) ζj ∧ ζk ,

shows that this S1·O(n)-structure has torsion, writing
σij = σji = σij = i

2(Iijk − i Jijk) ζj − i
2(Iijk + i Jijk) ζj

shows that

dζi = −
(
iω0 + θij + σij

)
∧ ζj = −

(
iω0 + φij

)
∧ ζj ,

so the underlying S1·GL(n,R)-structure on Q is torsion-free.
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Now R(f) = υ(f)−1(Rn) ⊂ Tq(f)Q depends only on u(f) ∈ Σ, so
the S1·GL(n,R)-structure on Q defines an S1-bundle of n-planes
R ⊂ Gr(n, TQ):

R2n+1 ←− Σ2n+1

↘ � ↙ ↘π

Q2n Mn+1

Prop: The images Cx = �
(
π−1(x)

)
⊂ Q have the n-planes in R

as their tangent spaces. Conversely, a connected Cn ⊂ Q whose
tangent planes belong to R lies in a unique Cx.
Defn: A torsion-free S1 ·GL(n,R)-structure on a 2n-manifold Q
will be said to be R-integrable if every n-plane E ∈ R is tangent
to an n-manifold C ⊂ Q whose tangent spaces belong to R.
Prop: When n > 2, any torsion-free S1·GL(n,R)-structure on a
2n-manifold Q is R-integrable (and hence Mn+1 exists).
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The structure equations. Now let q : F → Q be a torsion-free,
R-integrable S1 ·GL(n,R)-structure. The first structure equation

dζi = −
(
i δi

j ω0 + φi
j

)
∧ ζj

implies there are R-valued functions bij = bji and ri
jkl = ri

kjl = ri
jlk

on F satisfying the second structure equation:

dω0 = −i bkl ζ
k ∧ ζl ,

dφi
j + φi

k ∧φk
j = bjl

(
ζi ∧ ζl + ζi ∧ ζl

)
+ i ri

jkl ζ
k ∧ ζl .

Wewill also need the second Bianchi identity for such structures:
There exist unique C-valued functions Bijk = Bjik = Bikj and
Ri

jklm = Ri
kjlm = Ri

jlkm = Ri
jkml on F so that

dbij = bkjφ
k
i + bikφ

k
j + Re

(
Bijkζ

k
)
,

dri
jkl = −rm

jklφ
i
m + ri

mklφ
m
j + ri

jmlφ
m
k + ri

jkmφm
l

+ Re
((
Ri

jklm − i (δi
j Bklm + δi

k Bljm + δi
l Bkjm)

)
ζm

)
.
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Prop: (B—) The 2nd Bianchi tableau for torsion-free, R-integrable
S1·GL(n,R)-structures is involutive, with Cartan characters given
by

sk =




0, k = 0, 1,
k − 1 + n

(
n+ (n+1−k)(k−2)

)
, 2 ≤ k ≤ n+1,

0, n+1 < k ≤ 2n.

Theorem: (B—) Up to diffeomorphism, the local torsion-free,
R-integrable S1·GL(n,R)-structures depend on n(n+1) functions
of n+1 variables. The curvature can be freely specified at a point.

Cor: (B—) The subgroup S1·GL(n,R) ⊂ GL(2n,R) does occur
as the holonomy of a torsion-free affine connection in dimension 2n
(even though it was omitted from the classification list given by
Schwachhöfer and Merkulov).
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Recovering the Finsler structure. Let q : F → Q2n be a
torsion-free, R-integrable S1 ·GL(n,R)-structure, with str. eqs.

dζi = −
(
i δi

j ω0 + φi
j

)
∧ ζj

dω0 = −i bkl ζ
k ∧ ζl ,

dφi
j + φi

k ∧φk
j = bjl

(
ζi ∧ ζl + ζi ∧ ζl

)
+ i ri

jkl ζ
k ∧ ζl .

If the real symmetric matrix b = (bij) is positive definite, then the
equation bij = 1

2
δij defines an S1 ·O(n)-structure F0 ⊂ F and the

structure equations show that it comes from a generalized Finsler
structure with constant flag curvature +1 on the space Mn+1 of
R-leaves of the structure F .

F −→ R2n+1

↘ � ↙ ↘π

Q2n Mn+1
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