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Background: Let M"*! be a connected, smooth manifold and
let 2" T1 C TM be a (generalized) Finsler structure on M:

Y —— TM O(n) —— F
= = I
M )

First structure equations:

dwo = — Ooj Awj (the Hilbert form)

dw; = 0g; Awg — 9”- ANWj — Lijjk o ANWj,

dby; = —Gij A ooj + Royior wo Awk + %R()ijk Wi AWg + Jijk Ook N Wj
Constant Flag Curvature c: Ry = c¢d;;j. (= Roijx =0)

Question: How ‘general’ are these (gen.) Finsler structures?



I will concentrate on the case ¢ = 1 in this lecture.

Simplified structure equations:

dwo = — 90j N Wy
dwi = 901'/\(.00 _oij AWy _Iijk 90k AWy,
dby; = —w; Awg — eij A 90j aF Jz’jk 0ok AWj

Prop: (B—, Bejancu & Farran) Let E be the Reeb vector field
on X (i.e., the vector field dual to wp, the Hilbert form), then

wi 4 wn® 001+ -+ o
is invariant under the flow of E.
Defn: Let @ be the space of integral curves of E. Say that %

is geodesically simple if @ has a Haus. manifold str. so that the
projection £ : ¥ — @ is a smooth submersion.



Theorem: (B—) The space @ is naturally a Kéhler manifold with
Kéhler metric and 2-form satisfying

0 (do?®) =wi? 4+ wp? + 0017+ -+ 00,7
* (Q) = —w;jrby; = —dwp .
PROOF: Write (; = w; — 16, so that
0(do®) =CroGi+ - +Guoln, and £(2)=35GnG.
The structure equations imply
d¢i = —iwon G — 05 A ¢ + (1Jk—|—1Jmk)CJ/\Ck,

so the Newlander-Nirenberg theorem implies that there is an in-
tegrable complex structure on @ for which {(1,...,{,} spans the
¢-pullbacks of the (1,0)-forms.

Since £*(2) = —dwy is closed and £ is a submersion, € is also
closed. Thus, (do?,Q) defines a Kéhler structure on Q. O

REMARK: A Kéhler structure is just a torsion-free U(n)-structure.



A finer structure. Consider ( = (wi — 1901) =(): TF — C™.
C(v)=0iff ¢ (v) =0for q: F — ¥ — @Q (the composition).
Define v(f) : Ty5)@ — C™ so that this diagram commutes:

F L ocn

|
Ty n@
Prop: v maps F into an open subset of an S'-O(n)-structure
on Q, where
S*0m)={e*A | e €S', A€0(n) } c Un) C GL(n,C).
Prop: The S!- O(n)-structure is torsion-free iff ¥ is Riemannian,

but the underlying S*- GL(n, R)-structure is always torsion-free.

REMARK: Forn > 1, the group S*- GL(n,R) C GL(2n,R) is not on
the accepted list of groups that can be holonomy of an irreducible
torsion-free connection in dimension 2n!



The surface case: A double fibration:
23
¢ / \71-
Q2 M2

K*(dUQ) :w12—|—9012, é*(Q) = 0p1 Awr -

Extra structure: The 1-form :

36 € QY(Q) so that £*3 = —I111 w1 + J111 001-

Prop: Let K be the Gauss curvature of do?. Then d3 = (1-K)
and, for z € M, the curve C, = {(n~*(x)) is a f-geodesic.

Defn: If (Q,do?) is an oriented surface, with area form Q and 3
is a 1-form on @, a curve C' C @ is a (-geodesic if ko dsg = C*f3 .



23
14 / \71-
Q2 M2

Prop: (Converse) If (Q,do?, (2, 3) satisfies d3 = (1-K)Q and if
¢ : Y — @Q is the do?-unit sphere bundle, then ¥ is foliated by
[-geodesics and the leaf space M carries a canonical (generalized)
Finsler structure of constant flag curvature +1.

Cor: (Local generality) The Finsler surfaces of constant flag cur-
vature +1 depend on two arbitrary functions of two variables, up
to diffeomorphism.

Prop: (Global) If (S?,do?, (2, 3) satisfies d3 = (1—K) Q and if all
of the (-geodesics are closed, then it comes from a global Finsler
structure with constant flag curvature +1 on M = S2.



Lemma: Let (Q,do? Q,3) be an oriented surface with 1-form
and L a positive function on (). Set

dé?=Ldo?, Q=LQ, [=08+x*d(logVL).
Then the 3-geodesics with respect to (da?, Q) are the same as the
f-geodesics of (do?, Q).

Lemma: Let Q be a surface endowed with a metric do? with
Gauss curvature K > 0 and area form . Then the data

do? = K do?, QO=KQ, 3 = +d(log VE),
satisfy d3 = (1 — K) Q, where K is the Gauss curvature of da2.
Theorem: If do? is a Zoll metric on @ = S? with area form Qg

and positive Gauss curvature Ky. Let M ~ S2? be the space of
oriented do2-geodesics on Q. Then the data

do? = Ko dop, Q=KyQ, B = xd(log \/Ko)

come from a Finsler metric on M with constant flag curvature +1.



Higher dimensions. | From now on, assume n > 1.

Recall the structure equations of the O(n)-structure v : F — X:

dwo = — eoj N Wy
dwi = 901'/\(.00 —Gij AWy _Iz'jk 90k AWy,
dby; = —w; Awg — 9”- A eoj I Jz’jk Ook AWj

and how ¢ = (¢;) = (w; — i6p;) defines a S*- O(n)-structure on Q:
An f € F defines an isomorphism v(f) : T;5@Q — C". Although

d¢i = —iwon G — 05 A G+ 5 (Lije +1Jijk) G A Gk
shows that this S'- O(n)-structure has torsion, writing
0ij = 0ji = 0ij = 5(Ligk — 1 Jijr) G — 5L + 1 Jiji) G
shows that
d¢ = —(iwo + 035 + 0ij) A G = —(iwo + ¢4) A ¢,

so the underlying S*- GL(n, R)-structure on @ is torsion-free.



Now R(f) = v(
the S1-GL(n,R
R C Gr(n, TQ):

[)7HR™) C Ty5)@ depends only on u(f) € %, so
)-structure on @Q defines an S*-bundle of n-planes

R2n+1 - 22n+1
N £/ N
QQn Mn+1
Prop: The images C, = {(77!(z)) C @ have the n-planes in R

as their tangent spaces. Conversely, a connected C" C @ whose
tangent planes belong to R lies in a unique C,.

Defn: A torsion-free S'- GL(n,R)-structure on a 2n-manifold Q
will be said to be R-integrable if every n-plane F € R is tangent
to an n-manifold C' C @ whose tangent spaces belong to R.
Prop: When n > 2, any torsion-free S*- GL(n, R)-structure on a
2n-manifold @ is R-integrable (and hence M™T exists).



The structure equations. Now let ¢ : F' — @ be a torsion-free,
R-integrable S*- GL(n, R)-structure. The first structure equation

d¢* = — (10 wo + ¢%) A ¢?
implies there are R-valued functions b; = bj; and rly, = rj; = 74,
on F satisfying the second structure equation:

dwo =—i bkl Qk /\E,
dgj + ¢ n ¢y = by (¢ AT+ CTaC!) +irg P adl.
We will also need the second Bianchi identity for such structures:

There exist unique C-valued functions B;;i = Bjix = Bix; and
Ripim = Bijim = Bjigm = Rppmy on F so that

db; = brjdf + by + Re (Bijrc¥) |
dT;kz = —Tﬂzﬁbin + T:nleS;n + rﬁmmbz” + T;kmﬁbfn

+ Re ((Rzklm —i (5; Bklm + (S]lc Bljm + 511 Bkjm)) gm) .



Prop: (B—) The 2"? Bianchi tableau for torsion-free, R-integrable
S1. GL(n,R)-structures is involutive, with Cartan characters given
by

Oa k:O,l,
sk =13 k—1+n(n+ (n+1-k)(k—2)), 2<k<n+l,
0, n+l <k <2n.

Theorem: (B—) Up to diffeomorphism, the local torsion-free,
R-integrable S'- GL(n, R)-structures depend on n(n+1) functions
of n+1 variables. The curvature can be freely specified at a point.

Cor: (B—) The subgroup S'-GL(n,R) C GL(2n,R) does occur
as the holonomy of a torsion-free affine connection in dimension 2n
(even though it was omitted from the classification list given by
Schwachhofer and Merkulov).



Recovering the Finsler structure. Let ¢ : F — Q%" be a
torsion-free, R-integrable S'- GL(n, R)-structure, with str. eqgs.

d¢" = — (185 wo + ¢%) n¢?
dwy = —ib CF A (T,
dgg + 9 165 = byt (¢'n T+ T nC!) +ir5, CEadl.
If the real symmetric matrix b = (b;;) is positive definite, then the
equation b;; = £4;; defines an S*- O(n)-structure Fy C F and the
structure equations show that it comes from a generalized Finsler

structure with constant flag curvature 4+1 on the space M"*+! of
R-leaves of the structure F'.

F _ R2n+1

N\ ¢ N
QQn Mn+1
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