A SCHUR LEMMA FOR EINSTEIN RANDERS METRICS

Colleen Robles,
University of British Columbia
Based on joint work with
David Bao,
University of Houston

June 7, 2002

RICCI CURVATURE AND EINSTEIN METRICS

The relevant quantities are

- the spray curvature, $K^{i}_{j} := y^{h} R_{h jk}^{i} y^{k}$;
- the Ricci scalar Ric, given by $K^{i}_{i} = Ric F^{2}$;
- the Ricci tensor, $\operatorname{Ric}_{ij} := \left[\frac{1}{2}K^s_{\ s}\right]_{y^iy^j}$.

DEFINITION: F is **Einstein** if Ric(x, y) is a function of x alone. Equivalently,

$$Ric_{ij} = Ric(x)g_{ij} ,$$

where $g_{ij} := \frac{1}{2} (F^2)_{y^i y^j}$.

GOAL: Show Ric is constant for Einstein metrics of Randers type, n > 2.

NOTATION: Randers metrics are denoted $F = \alpha + \beta$, where

$$\alpha = \sqrt{\tilde{a}_{ij}(x)y^iy^j} , \qquad \beta = \tilde{b}_i(x)y^i .$$

SCHUR FAILS IN 2-DIMENSIONS

Consider a surface of revolution $M \subset \mathbb{R}^3$, parametrised as

$$(\vartheta, \varphi) \mapsto (f(\varphi)\cos(\vartheta), f(\varphi)\sin(\vartheta), g(\varphi)).$$

Shen perturb by $W := \epsilon \partial_{\vartheta}, \ \epsilon |f| < 1$. The resulting Randers metric $F = \alpha + \beta$,

$$\alpha = \frac{\sqrt{u^2 f^2 + v^2 (1 - \epsilon^2 f^2) (\dot{f}^2 + \dot{g}^2)}}{1 - \epsilon^2 f^2}, \qquad 1 - \epsilon^2 f^2, \qquad y = (u, v) \in T_{(\vartheta, \varphi)} M.$$

is Einstein, with Ricci scalar

$$Ric = \frac{\dot{g} (\dot{f} \ddot{g} - \ddot{f} \dot{g})}{f (\dot{f}^2 + \dot{g}^2)^2},$$

a non-constant function of φ .

THE RIEMANNIAN SCHUR LEMMA

Assume $\widetilde{Ric}_{ij} = Ric(x)\tilde{a}_{ij}$.

All Riemannian surfaces satisfy this condition. Suppose n > 2.

Trace on (i, j) to obtain

$$\tilde{S} := \operatorname{Ric}^{i}_{i} = Ric(x)n \quad \Rightarrow \quad \widetilde{\operatorname{Ric}}_{ij} = \frac{\tilde{S}}{n}\tilde{a}_{ij}.$$

The second Bianchi identity:

$$0 = \tilde{R}_{h\ jk|l}^{\ i} + \tilde{R}_{h\ lj|k}^{\ i} + \tilde{R}_{h\ kl|j}^{\ i}$$

Trace on (i, j) and (h, l):

$$0 = 2\widetilde{\mathrm{Ric}}^{i}_{k|i} - \tilde{S}_{|k}$$

$$= \frac{2}{n}\tilde{S}_{|k} - \tilde{S}_{|k}$$

$$\Rightarrow 0 = (n-2)\tilde{S}_{|k}$$

Whence $Ric_{|k} = \frac{1}{n}\tilde{S}_{|k} = 0$ when n > 2.

A FINSLERIAN OBSTACLE

The second Bianchi identity for a Finsler metric:

$$R_{h\ jk|l}^{\ i} + R_{h\ lj|k}^{\ i} + R_{h\ kl|j}^{\ i}$$

$$= P_{h\ js}^{\ i} R_{kl}^{s} + P_{h\ ks}^{\ i} R_{\ lj}^{s} + P_{h\ ls}^{\ i} R_{\ jk}^{s},$$

where

$$R^s_{jk} := \frac{1}{F} y^i R_i^{\ s}_{jk} \,.$$

The non-vanishing right hand side leads one to expect the Schur Lemma to fail for general Finsler metrics.

SPECIAL TENSORS

Covariant differentiation by the Levi-Civita connection of \tilde{a}_{ij} is denoted by a vertical slash:

$$\tilde{b}_{i|j} := \tilde{b}_{i,x^j} - \tilde{b}_h \tilde{\gamma}^h_{ij}
\text{lie}_{ij} := \tilde{b}_{i|j} + \tilde{b}_{j|i} ,
\text{curl}_{ij} := \tilde{b}_{i|j} - \tilde{b}_{j|i} ,
\theta_i := \tilde{b}^h \text{curl}_{hi} .$$

The characterization of Einstein Randers Metrics $F = \alpha + \beta$

The Basic Equation

$$lie_{ik} = \sigma(\tilde{a}_{ik} - \tilde{b}_i\tilde{b}_k) - \tilde{b}_i \theta_k - \tilde{b}_k \theta_i$$

The Curvature Equation

$$\widetilde{Ric}_{ij} = \left(\tilde{a}_{ij} + \tilde{b}_{i}\tilde{b}_{j}\right)Ric(x)
- \frac{1}{4}\tilde{a}_{ij}\operatorname{curl}^{hk}\operatorname{curl}_{hk}
- \frac{1}{2}\operatorname{curl}^{h}_{i}\operatorname{curl}_{hj}
- (n-1)\left\{\frac{1}{16}\sigma^{2}\left(3\tilde{a}_{ij} - \tilde{b}_{i}\tilde{b}_{j}\right) + \frac{1}{4}\theta_{i}\theta_{j}\right\}
+ \frac{1}{4}\left(\theta_{i|j} + \theta_{j|i}\right)\right\}$$

The E(23) Equation

$$\operatorname{curl}_{i|h}^{h} = 2\operatorname{Ric}(x)\tilde{b}_{i} + (n-1)\left\{\frac{1}{8}\sigma^{2}\tilde{b}_{i} + \frac{1}{2}\sigma\theta_{i} + \frac{1}{2}\operatorname{curl}_{i}^{h}\theta_{h}\right\}$$

MATSUMOTO'S IDENTITY FOR EINSTEIN RANDERS METRICS: PRELIMINARY FORM

Matsumoto's identity for constant curvature Randers metrics, $\sigma(K + \frac{1}{16}\sigma^2) = 0$, may be generalised to Einstein metrics:

$$n\left\{1-\|\tilde{b}\|^2\right\}\sigma\left(K+\frac{1}{16}\sigma^2\right)\,+\,2K_{|\tilde{b}}=0\,,$$
 where $K=\frac{1}{n-1}Ric.$

Proof: The Ricci Identity for curl_{ij} ,

$$\operatorname{curl}_{ij|k|h} - \operatorname{curl}_{ij|h|k} = \operatorname{curl}_{sj} \tilde{R}_{i\ kh}^{\ s} + \operatorname{curl}_{is} \tilde{R}_{j\ kh}^{\ s}.$$

Trace (i, k) and (h, j),

$$\operatorname{curl}^{ij}_{|i|j} = \operatorname{curl}^{ij} \widetilde{\operatorname{Ric}}_{ij} = 0.$$

With the Basic and E(23) equations, $\operatorname{curl}^{ij}_{|i|j} = 0$ yields the identity.

A SCHUR LEMMA FOR EINSTEIN RANDERS SPACES

ASSUME: $F = \alpha + \beta$, $||\tilde{b}|| < 1$, is Einstein with Ricci scalar Ric = Ric(x). In particular, the Basic, E(23) and Curvature Equations, and the preliminary form of Matsumoto's Identity hold.

CLAIM : The Ricci scalar satisfies $Ric_{|k} = 0$ for n > 2.

STRATEGY: Apply the Riemannian second Bianchi identity to the Einstein Curvature Equation.

2nd Bianchi and Einstein Curvature Eqs

$$0 = \widetilde{Ric}_{i|k}^{i} - 2\widetilde{Ric}_{k|i}^{i}$$

$$= (2\theta_{k} - \operatorname{lie}_{i}^{i}\widetilde{b}_{k})Ric + (n + ||\widetilde{b}||^{2} - 2)Ric_{|k}$$

$$-2Ric_{|\widetilde{b}}\widetilde{b}_{k} - \operatorname{curl}_{|i}^{ij}\operatorname{curl}_{jk}$$

$$-\frac{1}{2}n\operatorname{curl}_{ij}^{ij}\operatorname{curl}_{ij|k} + \operatorname{curl}_{ij}^{ij}\operatorname{curl}_{ik|j}$$

$$+(n - 1)\left\{\frac{1}{16}\sigma^{2}(2\theta_{k} - \operatorname{lie}_{i}^{i}\widetilde{b}_{k}) + \frac{1}{2}\theta_{|i}^{i}\theta_{k} + \frac{1}{2}\theta_{|i}^{i}(\theta_{k|i} - \theta_{i|k}) + \frac{1}{2}(\theta_{|k|i}^{i} + \theta_{k}^{|i} - \theta_{|i|k}^{i})\right\}$$

We need to understand:

(T1)
$$-\frac{1}{2} n \operatorname{curl}^{ij} \operatorname{curl}_{ij|k} + \operatorname{curl}^{ij} \operatorname{curl}_{ik|j}$$
;

(T2)
$$\theta^i_{|i|}$$
,

(T3)
$$\theta^i(\theta_{k|i} - \theta_{i|k})$$
, and

(T4)
$$\frac{1}{2} (\theta^i_{|k|i} + \theta^{|i}_{k|i} - \theta^i_{|i|k})$$
.

A FORMULA FOR $CURL_{ij|k}$

At this point it is helpful to derive the following identity:

$$\operatorname{curl}_{ij|k} = -2\tilde{b}^s \tilde{R}_{ksij} + \operatorname{lie}_{ik|j} - \operatorname{lie}_{kj|i}.$$

Label this expression as (DC).

The displayed equality follows from the Ricci identity for \tilde{b} and the definition of lie_{ij} :

$$\tilde{b}_{i|j|k} - \tilde{b}_{i|k|j} = \tilde{b}^s \tilde{R}_{isjk}
\tilde{b}_{i|k|j} + \tilde{b}_{k|i|j} = \operatorname{lie}_{ik|j}
-\tilde{b}_{k|i|j} + \tilde{b}_{k|j|i} = -\tilde{b}^s \tilde{R}_{ksij}
-\tilde{b}_{k|j|i} - \tilde{b}_{j|k|i} = -\operatorname{lie}_{kj|i}
\tilde{b}_{j|k|i} - \tilde{b}_{j|i|k} = \tilde{b}^s \tilde{R}_{jski}.$$

Summing the five equalities above and applying the first Bianchi identity produces highlighted equation above.

(T1): The first application of (DC)

With the previous formula for $\operatorname{curl}_{ij|k}$ and the skew-symmetry of curl^{ij} we may show

$$\operatorname{curl}^{ij}\operatorname{curl}_{ik|j} = \frac{1}{2}\operatorname{curl}^{ij}\operatorname{curl}_{ij|k}.$$

Hence we may rewrite (T1) as

$$-\frac{1}{2} n \operatorname{curl}^{ij} \operatorname{curl}_{ij|k} + \operatorname{curl}^{ij} \operatorname{curl}_{ik|j}$$
$$= -\frac{1}{2} (n-1) \operatorname{curl}^{ij} \operatorname{curl}_{ij|k}.$$

(T2): A formula for
$$\theta^i_{|i}$$

Notice that

$$\tilde{b}_{h|i} \operatorname{curl}^{hi} = \frac{1}{2} (\operatorname{lie}_{hi} + \operatorname{curl}_{hi}) \operatorname{curl}^{hi} = \frac{1}{2} \operatorname{curl}_{hi} \operatorname{curl}^{hi}$$

A calculation with the E(23) Equation reveals

$$\theta^{i}_{|i} = (\tilde{b}_{h} \operatorname{curl}^{hi})_{|i}
= \tilde{b}_{h|i} \operatorname{curl}^{hi} + \tilde{b}_{h} \operatorname{curl}^{hi}_{|i}
= \frac{1}{2} \operatorname{curl}_{hi} \operatorname{curl}^{hi} + \frac{1}{2} (n-1) \theta_{i} \theta^{i}
- \{2Ric + \frac{1}{8} (n-1) \sigma^{2}\} ||\tilde{b}||^{2}.$$

A SECOND APPLICATION OF (DC)

With the Basic Equation and (DC) compute

$$\theta_{k|i} - \theta_{i|k} = (\tilde{b}^{j} \operatorname{curl}_{jk})_{|i} - (\tilde{b}^{j} \operatorname{curl}_{ji})_{|k}$$

$$= (\tilde{b}^{j}_{|i} \operatorname{curl}_{jk} + \tilde{b}^{j} \operatorname{curl}_{jk|i})$$

$$- (\tilde{b}^{j}_{|k} \operatorname{curl}_{ji} + \tilde{b}^{j} \operatorname{curl}_{ji|k})$$

$$\stackrel{\text{(DC)}}{=} \frac{1}{2} (\operatorname{lie}^{j}_{i} + \operatorname{curl}^{j}_{i}) \operatorname{curl}_{jk}$$

$$- \frac{1}{2} (\operatorname{lie}^{j}_{k} + \operatorname{curl}^{j}_{k}) \operatorname{curl}_{ji}$$

$$\tilde{b}^{j} \left\{ -2b^{s} (\tilde{R}_{isjk} - \tilde{R}_{ksji}) + (\operatorname{lie}_{ji|k} - \operatorname{lie}_{ik|j}) - (\operatorname{lie}_{jk|i} - \operatorname{lie}_{ki|j}) \right\}$$

$$\stackrel{\text{(BE)}}{-} -\sigma \operatorname{curl}_{ki}$$

This formula for the skew-symmetric part of $\theta_{k|i}$, will be used to compute (T3) and (T4).

(T3): The first application of
$$\theta_{k|i} - \theta_{i|k} = -\sigma \text{Curl}_{ki}$$

The term (T3) is given by:

$$\theta^{i}(\theta_{k|i} - \theta_{i|k}) = \sigma \, \theta^{i} \, \text{curl}_{ik}$$

(T4): The second application of
$$\theta_{k|i} - \theta_{i|k} = -\sigma \text{Curl}_{ki}$$

The Ricci Identity for θ implies

$$\theta^{i}_{|k|i} = \theta^{i}_{|i|k} + \theta^{i} \widetilde{\operatorname{Ric}}_{ik}$$
.

It follows that

$$\theta_{k|i}^{|i|} = (\theta^{i}_{|k} + \sigma \operatorname{curl}^{i}_{k})_{|i|}$$
$$= \theta^{i}_{|i|k} + \theta^{i} \widetilde{\operatorname{Ric}}_{ik} + \sigma \operatorname{curl}^{i}_{k|i|}.$$

Now we see the last term (T4) may be rewritten as

$$\frac{1}{2} \left(\theta^{i}_{|k|i} + \theta^{|i}_{k|i} - \theta^{i}_{|i|k} \right) =$$

$$\frac{1}{2} \theta^{i}_{|i|k} + \theta^{i} \widetilde{\operatorname{Ric}}_{ik} + \frac{1}{2} \sigma \operatorname{curl}^{i}_{k|i}.$$

FINALE

- Substitute the derived formulas for the terms T1, T2, T3 and T4 into the second Bianchi expression.
- After applying the Basic, E(23) and Curvature Equations, and Matsumoto's Identity; and utilizing the expression for $\theta_{k|i} \theta_{i|k}$ we have

$$0 = \widetilde{S}_{|k} - 2\widetilde{\operatorname{Ric}}_{k|i}^{i}$$
$$= (n-2)(1 - ||\widetilde{b}||^{2}) \operatorname{Ric}_{|k}$$

Hence $Ric_{|k} = 0$, and Ric(x) is constant.

Q.E.D.

COMMENTS

• Matsumoto's identity for (y-global) Einstein Randers metrics is updated to

$$\sigma(K + \frac{1}{16}\sigma^2) = 0,$$

when n > 2. The identity now agrees with the constant curvature version.

- The Einstein characterisation is essential. The Finsler second Bianchi identity is not amenable to a Schur type argument. The characterisation allows us to by-pass the Randers Ricci tensor Ric_{ij} and work with the Riemannian \widetilde{Ric}_{ij} and second Bianchi identity.
- Open Question: Does the Schur Lemma hold for arbitrary Finsler metrics?