l COHOMOLOGICAL DEGREES I



‘ INTRODUCTION '

Let (R,m) be a Noetherian local ring (or a Noetherian graded algebra)
and let M (R) be the category of finitely generated R—modules (or the
appopriate category of graded modules). A degree function is a numerical
function d : M (R) — N. The more interesting of them initialize on
modaules on finite length and have mechanisms that control how the
functions behave under generic hyperplane section. Thus, for example, if
L is a given module of finite length, one function may request

d(L) := A(L) = length of (L),
or in case that L be a graded module L = @, L,

d(L) :=sup{i|L; #0}.



How to deal with exact sequences of the form (generic hyperplane
sections)

0—0iuh—A-25A—A/hA—0, A0:4h)<oo,

become a fundamental issue.



‘ Important Degrees .

e Castelnuovo-Mumford regularity reg(-): If 4 is a linear form of R
whose annihilator O :4 4 has finite length, then

reg(A) = max{reg(0:4 h),reg(A/hA)}.

e Classical multiplicity deg(-): Let A be a finitely generated
R-module of dimension d and let & € m\ m? be such that 0 :4 A has

finite length. Then

(

A(A) if dimA = 0
MA/hA) —A(0:4 h) ifdimA =1
| deg(A/hA) if dimA > 2

deg(A) =

Y,




These functions read different aspects of the module (in the words of
Gunston, deg(-) is “ranky”, reg(-) is “shifty”) so it seems desirable to
have functions with properties of both.



l Arithmetic degree .

If one wants to capture the contributions of each primary component of
the module, adding them all gives rise to the arithmetic degree of M,
arith-deg(M). Assuming R is Gorenstein (for simplicity) it assembles

itself into

n
arith-deg(M) = ) deg(Exty(Extz(M,R),R)).
i=0

arith-deg(-) has some of the properties of deg(-), but the Bertini’s rule
goes out of whack:

arith-deg(M) < arith-deg(M /hM)

(one wants at least >).



| BIG DEGS '

In Gunston, Doering and myself introduced a general class of such
functions. In his thesis, Tor Gunston carried out a more formal
examination of such functions in order to introduce his own construction
of a new cohomological degree. One of the points that must be take care
of is that of an appropriate generic hyperplane section. Let us recall the
setting.

Throughout we suppose that the residue field k of R is infinite.



Definition:If (R, m) is a local ring, a notion of genericity on ‘M (R) is a
function

U : {isomorphism classes of M (R)} — {non-empty subsets of m\ m*}
subject to the following conditions for each A € M (R):

(i) If f—gem?then f € U(A) if and only if g € U(A).

(11) The set W C m/m? contains a non-empty Zariski-open subset.
(iii) If depthA > 0and f € U(A), thén f in regular on A.

There is a similar de: nition for graded modules. We will usually switch

notation, denoting the algebra by S.



Fixing a notion of genericity U(-) one has the following extension of the
classical multiplicity:

Definition: A cohomological degree, or extended multiplicity, is a function
Deg(-) : M(R) — N,

that satisfies



(i) If L=T(A) is the submodule of elements of A which are
annihilated by a power of the maximal ideal and A = A/L, then

Deg(A) = Deg(A) +A(L),
where A(-) is the ordinary length function. ‘
(i1) (Bertini’s rule) If A has positive depth and h € U(A), then
Deg(A) > Deg(A/hA).
(111) (The calibration rule) If A is a Cohen—Macaulay module, then
Deg(A) = deg(A),

where deg(A) is the ordinary multiplicity of the module A.
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For modules of dimM = 1, there is only one value

Deg(M) = deg(M) + A(submodule of finite support).

For dimR > 2, there is an infinite number of Deg’s.
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‘ Homological degree .

Let M be a finitely generated graded module over the graded algebra R
and let S be a Gorenstein graded algebra mapping onto R, with maximal
graded ideal m. Assume that dimS = r, dimM = d. The homological
degree of M is the integer

hdeg(M) = deg(M)+
4 d—1 »
-hdeg(Ext¢(M,S)).
§+( WH) ca(Exti(M,5))

This expression becomes more compact when dimM = dimS =d > 0:

hdeg(M) = deg(M)+

y (l- 1) -hdeg(Exti (M, S)).

i=1
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If M is a module Cohen-Macaulay on the punctured spectrum, then
hdeg(M) = deg(M) + SV (M),

where SV (M) is the Stuckrad-Vogel invariant of M. In particular, if A is a
two dimensional standard graded algebra over a field, without embedded
primes, then

Deg(A) = deg(A) + HR(A),

where HR(A) is the Hartshorne-Rao number of A (HR(A) = A(A/A),
where A is the S,-1fication of A).
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| GENERAL PROPERTIES '

Now we are going to see why these functions acquire their big degs

designations ...

Let Deg(-) be a cohomological degree. Let (R,m) be a Cohen—Macaulay
ring of dimension d, with an infinite residue field and let / be an ideal of
codimension g > 0. If depth R/I = r, then

v(I) < deg(R)+(g— 1)Deg(R/I)
+ (d—g—r)(Deg(R/I)—deg(R/I))

N >4
"

non-Cohen-Macaulay correction
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Another elementary observation: We assume that (R, m) is a
Cohen—Macaulay local ring and denote its residue field by K. For any
finitely generated R—module M, we denote by B;(M) its ith Betti number.

Let M be a finitely generated R—module. For any Deg(-) function and any
integer i > 0,
Bi(M) < Bi(K) - Deg(M).
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The following gives a basic comparison between any Deg(-) function and
the Castelnuovo—Mumford index of regularity of a standard graded
algebra.

Let A be a standard graded algebra over an infinite field k. For any
function Deg(-), it holds

reg(A) < Deg(A).

This justifies the use of Deg(-) as a measurer of complexities, but given
the inequality, why bother? We will keep this issue on the table.

A comparison in the opposite direction for a particular Deg(-) will be

given soon.
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| ARE THERE OTHER DEGS? '

The set of cohomological degrees is clearly a convex set. By setting
bdeg(M) = inf{Deg(M)},

where Deg(-) runs over the set of all the cohomological degrees,
obviously one gets another degree. In his thesis, Tor Gunston found a way
to refine any given cohomological degree function Deg(-) into the unique
cohomological degree bdeg(-) that meets the Bertini’s condition strictly:
If M has positive depth there are generic hyperplane sections such that

bdeg(M) = bdeg(M/hM).
He accomplishes this by defining

bdeg(M) := max{ bdeg(M/hM) | h is a generic hyperplane section }.
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It takes however an intricate technical argument to establish the coherence
of this definition. One drawback is that even when Deg(-) is given by an
explicit formula—such as in the case of hdeg(-)—the determination of
bdeg(M) does not come easy. The existence of at least one Deg(-) is used
in his argument to establish the existence of the maximum in the

definition above.
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Theorem[Gunston] If M is a finitely generated module over a
homogeneous k—algebra and depthM > 0, then

bdeg(M) < H(M;r),

where H(M;t) is the Hilbert function of M and r = reg(M).
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| PROBLEMS .

e For two finitely generated R—modules, estimate

v(Homg (A, B))
e For an ideal I C R, figure out bounds for

Deg(gr;(R))

e Interpret the (super) Hilbert function of the standard graded algebra
S = @,>0S, over the local ring R

SH(S;t) = Hpgeg (S31) = . bdeg(S,

n>0

e Do we need Higher Degs?
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Hompg (A, B)

The number of generators of Homg (A, B) obviously depends on many
relationships between the modules A & B. For a limited cass of modules,
we may want to frame the issue as follows: Consider the function
Homg(A,-) (or Homg(-, B)) and find estimates for the number of
generators of its values. Deg(-) functions seem to have a role that might
lead to something like

Deg(Homg(A, B)) < f(Deg(A), Deg(B)),
where f(-,-) is a polynomial (depending on R).

Partly, the motivation is to be able to find estimates for the number of
generators of modules such as such as [I C R]

Homg(/,/) and UHomR(I”,I”)

n>1
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Using Deg(-) = hdeg(-) or bdeg(-), with Kia Dalili, we have some

situations where
hdeg(Homg(A,B)) < f(hdeg(A) - hdeg(B))

where f(-) is a low degree polynomial (3 when dimR = 2).

The restrictions arise as follows: If R is an affine domain over an infinite
field, consider a hypersurface ring S C R (finite+rational). For any two
free modules A, B, Homg(A, B) = Homg(A, B), so the restriction ‘R is
Gorenstein’ is not very damaging.  Another restriction is that we are
mostly interested in Homg (E,E), E** and E*.

Theorem: If E is a module of dimension d > 1 over a Gorenstein ring R,
then

bdeg(E™) < (deg(R) + (;l) )hdeg(E).
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Example: Assume dimR = 3, FE is a torsionfree module of projective

dimension 1,
O—F —F—FE—0,

and that we want v(Hom(E, E)). The setting is the usual
[Auslander-Bridger]

E*® E — Hom(E,E) — Tor(D(E),E) — 0,

where D(E) in this case is Ext' (E,R). (Note that “we know a lot” about
this module since it appears in hdeg(E).) Looking at the sequence

0 — Tor (E,D(E)) — F,  D(E) — Fy @ D(E) — E® D(E) — 0,
and since D(FE) has dimension at most 1,

Deg(Tor; (E, D(E)) < Deg(Fy, @ D(E)) = fi -Deg(D(E)) < f; - (hdeg(E) — deg(E))

f1 = Bi1(E) is the Betti number of E which we know about from its
hdeg(E) (and the ring R: 3, (E) < B;(K)Deg(E), and make use of a
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previous general result for Vv(E*)). Putting together

v(Hom(E,E)) < (deg(R) + 1)hdeg(E)Vv(E) + f1(hdeg(E) — deg(E))
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Proposition: Let R be a regular local ring of dimension 3 and let A and B
be reflexive modules. Then

hdeg(Homg(A,B)) < 2-hdeg(A) - hdeg(B).

Proof. Since A is reflexive, it has a projéctive resolution
0—R" —R'—A—-Q;
a simple calculation shows that
hdeg(A) = deg(A) + £(Exty(A,R)),

since Exts(A,R) is a module of finite length. We use a similar expression
for hdeg(Homg (A, B)).

Applying the functor Homg (-, B) to the resolution yields the exact
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sequence

0 — H = Homg(A,B) —> B" — B™ — Exth(A,B) — 0.

Denote by D the image of ¢ and consider the cohomology exact
sequences (we take into account the fact that A, B and Homg(A, B) are
reflexive modules and Ext}(A,R), Exth(B,R) and Exth(A, B) are modules
of finite length):

0 — Homg(D,R) — Homg(B",R) — Homg(H,R) — Extg(D,R)
— Extp(B",R) — Extgy(H,R) — Ext4(D,R) — 0,

HOl’IlR(Bm,R) ~ HomR(D,R)
Exth(B™,R) ~ Extp(D,R)
Ext4(D,R) ~ Exty(Exty(A,B),R).
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With these identifications, and the exact sequence
Ext}(B,R™) = Exth(B™,R) — Extk(B",R) = Extg(B,R") — Exty(B,A) — 0,
we obtain the exact sequence

0 — ExtkL(B,A) — Exth(Homg(A, B),R) — Exty(Exty(A,B),R) — 0.

Next observe that Ext}(B,A) ~ Exth(B,R) ®g A, and therefore

¢(Exth(B,A)) < V(A){(Exty(B,A)).
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By duality we have a similar expression for the length of

Ext (Extk(A,B),R). Assembling hdeg(Homg(A, B)) we have
deg(Homg(A, B)) + ¢(Ext}(Homg(A, B),R))
deg(A) - deg(B) + v(A)(hdeg(B) — deg(B))
v(B)(hdeg(A) — deg(A))

2-hdeg(A) - hdeg(B),

hdeg(Homg(A, B))

IA

IN -+

since v(-) < hdeg(-).
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Exercise with $10 reward: Let R be a Cohen—Macaulay local ring with
canonical module ® and define the module E by

D

0—>R— ®w" — E—0,

where 1 € R maps onto the ‘vector’(xy,...,x,) determined by a generating
set for ®. E is Cohen—Macaulay. What is a bound for

v(Homg(E,E))?
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Deg(gr;(R))

One setting for applications of Deg(-) to finiteness results is the following

elementary observation:

Proposition: Let Deg(-) be a cohomological degree definable on local
Noetherian rings. Given two positive integers A and d, there exists only a
finite number of Hilbert functions associated to standard graded algebras
G over Artinian rings such that dimG = d and Deg(G) < A.
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Let (R, m) be a Noetherian local ring of dimension d, and set G = gr,,, (R).
Rossi, Trung and Valla established the following elegant count:

Theorem: For any cohomological degree Deg(-) set
I(R) = Deg(R) —deg(R) = Deg(R) — e(R). The following estimation
holds

Deg(R) — 1 ifd =1,

reg(G) < T o .
e(R)4~D'=1e(R)2 + e(R)I(R) + 21(R) — e(R)]“~V' — I(R) ifd > 2.
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Conjecture: Let / be an ideal of a Cohen—Macaulay local ring R. Then

r(I) < Deg(gr;(R)),

where r(/) is the reduction number of 1.
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SH(S;t)

Let (R, m) be a Noetherian local ring with an infinite residue field and fix
Deg(-) = bdeg(-). For a (an essentially) standard graded algebra S over R,

S=PSn,

| n>0

SH(S;t) = @Deg(Sn)t”,

n>0
which will be called the Big Hilbert Series of S. (Similarly for graded
modules.)

Proposition: SH(S;?) is a rational function of degree dimS/msS.
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If I C R and S = gr;(R), the knowledge of such functions would be
helpful in studying properties of the integral closure of I (reduction
numbers, multiplicity of fibers particularly) in the same manner one

already has for m—primary ideals.

Drawback: Pretty tricky to compute.

What is the meaning of the postulation number of SH(S;t)?
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‘ Are Higher Degs needed? '

e Computation Driven: Combining reg(-) with Deg(-)?

e Digging Deeper: Using Hilbert function more?
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