REPRESENTATION THEORY OF CM RNGS

MSRI, February 3, 2003

§0. Introduction.

e Throughout, (R, m, k) is a Cohen-Macaulay local ring
of dimension d. Modules are always assumed to be finitely
generated. gM is MCM provided depth(M) = d.

We are interested in direct-sum decompositions of MCM
modules.

Existence. When are there only finitely many inde-
composable MCM R-modules — finite representation type
(FRT)? More generally, when is there a bound on the
“size” (multiplicity) of the indecomposable modules — bounded
representation type (BRT)?

Uniqueness. Until recently, these questions have been
considered only for complete (or at least Henselian) local
rings, where one has the Krull-Schmidt Theorem (unique-
ness of representation as a direct sum of indecomposable
MCM modules). Here we will discuss primarily the gen-
eral situation, where Krull-Schmidt can fail, and we will
describe exactly how badly it can fail.

OUTLINE.
§1. The complete equicharacteristic case.
§2. FRT for R vs. R.
§3. The positive normal monoid add(M)
§4. The number of distinct indecomposable summands.
§5. BRT and Brauer-Thrall.
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§1. Complete equicharacteristic rings with FRT.

Theorem. (Buchweitz, Greuel, Schreyer, Knorrer, 1987)
Let R = Cl[xo,...,z4]]/(f), where C is an algebraically
closed field of characteristic # 2,3,5. Then R has FRT
if and only if R = Cllz,y,22,...,24]]/(g + 25+ - - + z2),
where g € Clx,y] is one of
(Ap) 2" +y* (n2>1)
(D) z(z" 2 +y?) (n2>4)
6) zt + 13

) y(z° +y?)

) 2%+ P

\]

(E
(E
(Eg

The classification has been worked out also in charac-
teristics 2, 3,5, but the normal forms become much more
complicated, particularly in characteristic 2. These results
are particularly satisfying in view of the following fact:

Theorem. (Herzog, 1978) Assume R (local, CM) has FRT.
Then R is a hypersurface.

What about non-Gorenstein rings with FRT? In dimen-
sion two, we have the rings C[[X, Y]]“, where G is a finite
subgroup of GL(2,C). There are two three-dimensional
examples, due to Auslander and Reiten (1989). There ap-
pear to be no known examples of dimension four or higher.

§2. Ascent and descent of FRT.

Theorem. (Leuschke and , 2000; conjectured by
Schreyer in 1985)

(1) If R has FRT, so has R. The converse holds if R
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1S excellent.
(2) Let k be a perfect field with algebraic closure K,
and let I be an ideal in the formal power series ring

kllz1,...,2n]]. Thenk[[x1,...,2,]]/] has FRT <—
Kllz1,...,z,]]/I has FRT.

This gives a complete classification of the Gorenstein
equicharacteristic local rings with FRT and with perfect
residue field.

Sketch of proof of Theorem: The hardest part is to
prove ascent from R to R. Assume R has FRT. Show first
that the Henselization R® has FRT. It is enough to show
that if R — S is an étale local homomorphism then S has
FRT. If R — S is finite, this is easy: The multiplication
map S®rS — R splits as § — 5 bimodules. Therefore any
MCM g¢N is a direct summand of the extended module
S ®pr N (where we view N as an R-module via restriction
of scalars). It follows easily that S has FRT. (This proves
ascent ( => ) in part (2) as well.)

In general, push forward to get N to be a d*® syzygy (of,
say, M) over S. Now write g M as a direct limit of finitely
generated S-modules, use the argument above, and take
syzygies over R. To do the push forward, one needs to
know that R is Gorenstein on the punctured spectrum.
(The original proof of this fact used Néron-Popescu desin-
gularization and Artin approximation to show that R" has
a canonical module. This step can now be avoided, thanks
to the recent result by Huneke and Leuschke: If R has FRT
then R is an isolated singularity.)
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Now, to get ascent from R! to R, we use the fact (Aus-
lander, 1985) that R" has an isolated singularity and hence
so does R, since R is excellent. Now Elkik’s theorem (1974)
says that every MCM R-module is actually extended from
RP, and it follows that R has FRT.

We do not know whether the theorem is true without
the hypothesis that R is excellent.

Before proving descent, we set up a little machine.

§3. The positive normal monoid add(M).

What we do now works for arbitrary finitely generated
modules over any local ring R. Fix pM, and let add(M)
be the set of isomorphism classes of modules N such that
N @ N = M®™ for some RN’ and some positive integer
n. We view add(M) as an additive monoid, with addition
given by .

Write M = Vl(al) @@V, where the V; are pairwise
non-isomorphic indecomposable R-modules and the a; are
positive integers.

There is an obvious homomorphism A : add(M) — N¢
taking N to (by,...,b), where N = V]_(b1> @D Vt(bt).
This is an embedding of monoids, and in fact it is a divisor
homomorphism:

A(N1) < A(N3) <= Nj is a direct summand of Nj.

Thus add(M) is identified with a full submonoid of N,
that is, add(M) = G NNt for some subgroup G < Z®.
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(Monoids that can be representd in this form, as G N Nt
for some G < Z®), are called are called positive normal
monoids.) In particular, add(M) contains only finitely
many indecomposables (the elements corresponding to the
fundamental (minimal non-zero) elements of this monoid
(the Hilbert basis of the monoid).

Proof of descent of FRT Assuming R has FRT, let
Vi,...V; be all of the indecomposable MCM R-modules
that actually occur in decompositions of extended MCM
modules. Choose any M such that M 2 Vl(al) ®-- ~€EVt(at)
with each a; positive. Then the indecomposable MCM
R-modules are exactly the minimal non-zero elements of
add(M). (This also proves descent in part (2) of the The-
orem in §2.)

§4. The number of indecomposable factors. How
badly can Krull-Schmidt fail for finitely generated modules
over a local ring (R, m,k)? We can get some answers by
examining the positive normal monoids add(M).

Of course we have direct-sum cancellation. Moreover,
certain other kinds of failure of Krull-Schmidt are easily
ruled out. For example:

Proposition. Let M and N be indecomposable R-modules
such that M) = N) with r and s positive integers. Then
M~N (andr =5).

Proof. We can assume 7 > s. Then (working in N*) we
have A(M) < A(N). Therefore M is a direct summand of
N.
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To get more subtle information, let a,, (M) be the num-
ber of non-isomorphic indecomposable modules that are
direct summands of M(™. (Thus a,(M) = 1 for all n if
and only if M is a completely fundamental element (Stan-
ley) of add(M).) Since we already know that add(M) has
only finitely many indecomposables, the sequence a.(M)
1s eventually constant, and of course it is non-decreasing.
What else? Here are some specific questions:

Question 1. Are there examples in which a.(M) is not
constant?

Question 2. Can (1,2,2,2,...) occur?
Question 3. Can (1,3,3,4,4,4...) occur?
Question 4. Can (1,3,5,6,6,7,7,7,...) occur?

Question 5. Can (1,...,1,3,3,3,...) occur (with a, = 1
for n <82 and a, =3 forn > 83)7

Answer to Question 2: No. Proof: Say M(?) = M(a)®
N®  where M and N are non-isomorphic indecompos-
ables and a > 0,b > 0. Cancel copies of M until either
the Proposition is violated or we have 0 = M) @ N®)
contradiction.

Answer to Question 3: No (Hassler, 2003).

Here is an example of a positive normal monoid for
which the sequence in Question 4 actually arises:
Let ® : QW — Qbe given by thematrix[1 2 3 —6],
and put A := Ker(®) N N4. The Hilbert basis for A has
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seven elements:

17 6 07 07 3] 47 27
1 0 3 0 0 1 2
1]’ 0’ 0|’ 217 1|’ 0|’ 0
|1 |1 |1 |1 1] L0 |1

If we could represent this monoid in the form add(Af),
1

with M corresponding to the column {i

} , we would have
1

a.(M)=(1,3,5,6,6,7,7,7,...).
Similarly, for the example in Question 5, we could take
® =[1 82 —83]. The Hilbert basis for the kernel is

1 0 83
1], 83 |, 0
1 82 1

It is known (Hochster) that every positive normal monoid
is isomorphic to a Diophantine monoid, that is, one of the
form Ker(®) NN? for some s X t matrix ® with integer en-
tries. Moreover, we have the following realization theorem:

Theorem. ( , 2001) Let s be a fized positive in-
teger. Then there exists an analytically unramified one-
dimensional local domain R with the following property:
Let A be any Diophantine monoid defined by s homoge-
neous linear equations (i.e., A = Ker(®) N N* for some t
and some s X t integer matriz ® ). Assume that A contains
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an element a = [a; as ... a;]® with each a; > 0. Then
there s a MCM (= torsion-free) R-module M such that
add(M) = A (via the embedding A\ described earlier), and
with A\([M]) = «.

In fact (Facchini and , 2003), one can take R to be
any domain (one-dimensional and analytically unramified)
whose completion contains at least s + 1 maximal ideals,
and such that R does not have FRT. (Note: Failure of FRT
is automatic if s > 3).

Thus, if R is any one-dimensional local domain without
FRT such that R is reduced but not a domain, then the se-
quences (1,3,5,6,7,7,7,...) and (1,...,1,3,3,3,...) ac-
tually occur for suitable MCM R-modules M.

§5. BRT and Brauer-Thrall. What are the CM local
rings with BRT but not FRT (counterexamples to the first
Brauer-Thrall conjecture, in the context of MCM mod-
ules)?

We begin with dimension one:

Theorem. Leuschke and , 2003) Let (R,m,k) be
an equicharacteristic one-dimensional local CM ring with
k infinite. Then R has bounded but infinite representation
type if and only ifR is 1somorphic to one of the following:
(1) k[[z,v]]/(y?) (the As) singularity), or
(2) k[[z,y]]/(xy?) (the Do singularity), or
(3) the endomorphism ring of the maximal of the ring
in (2), equivalently, the ring kl|z,y, 2]]/I, where I
Yy oz
y z ozl

is the ideal of 2X2 minors of the matriz
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For higher-dimensional hypersurfaces, we have the fol-
lowing;:
Theorem. (Leuschke and , 2003) Let R be a hy-
persurface ring k[[xo, ..., zq4]]/(f), where k is any infinite
field. Then R has bounded but infinite representation type
if and only if R is isomorphic to either

(1) kllz,y,z2,...,zaq)]/(y* + 23+ - -+ 22) or
(2) oy, @zl (ay? + 23+ - + 2)

Finally, a Brauer-Thrall theorem:

Theorem. (Leuschke and , 2003) Let (R, m,k) be
an excellent equicharacteristic CM local ring with k perfect.
Then R has fintite CM type if and only if R has bounded
CM type and Rp is regular for each prime ideal P # m.

Excellence is used only in the “if” direction, and it can-
not be removed.



