Topological equivalences of differential
graded algebras
(Joint work with D. Dugger)

“Abelian groups up to homotopy”
spectra <=-generalized cohomology theories

Examples:
1. Ordinary cohomology:
For A any abelian group, H*(X; A) = [ X, K(A,n)).

Eilenberg-Mac Lane spectrum, denoted HA.
HA, = K(A,n) forn > 0.

The coeflicients of the theory are given by
§ A x=0
HA (pt)_{() * £ ()



2. Hypercohomology:

For C'. any chain complex of abelian groups,

HY (X C.) & @,_,— s HP(X; H,(C.)).

Just a direct sum of shifted ordinary cohomologies.

HCX(pt) = H.(C.).

3. Complex K-theory:

K*(X); associated spectrum denoted K.

Ko U n = odd
") BU X Z n = even

) ] 0 *=o0dd
K(pt)_{Z * = even

4. Stable cohomotopy:

m5(X); associated spectrum denoted S.
S, = S", S is the sphere spectrum.

m5(pt) = 75, (pt) = stable homotopy groups of
spheres. These are only known in a range.



“Rings up to homotopy”
ring spectra <=-gen. coh. theories with a product

1. For R aring, HR is a ring spectrum.
The cup product gives a graded product:
HRP(X)® HRY(X) —» HRP(X)

Induced by K(R,p) N K(R,q) = K(R,p+ q).

Definition. X AY = X xY/(X xpt)U (pt xY).

2. For A. a differential graded algebra (DGA),
HA. is a ring spectrum. Product induced by

pA QA - A or A, A, = Ay,

The groups H(X; A.) are still determined by H,(A),
but the product structure is not determined H,(A).

3. K is a ring spectrum;
Product induced by tensor product of vector bundles.

4. S is a commutative ring spectrum.



Definitions

“Definition.” A ring spectrum is a sequence of
pointed spaces R = (Ry, Ry, -+, Ry, -+ ) with
compatibly associative and unital products

Ry N Ry — Ry

Definition. The suspension of a based space X is

YX =S'AXZ(CX Uy CX)/ pt.

f Y \)

Definition. A spectrum F is a sequence of
pointed spaces (Fy, Fy, -+, Fy,,--+) with structure
maps 2F, — Fi1.

Example: S a commutative ring spectrum
Structure maps: 19" = S1 A S* = S+l
Product maps: SP A S¢ = gpHa

Actually, must be more careful here. For example:

Stast —= twist ST A Stis a degree —1 map.



History of spectra and A

Boardman in 1965 defined spectra and A. A is
only commutative and associative up to homotopy.

Ao Ting spectrum = best approximation to associa-
tive ring spectrum.

E ring spectrum = best approximation to commu-
tative ring spectrum.

Lewis in 1991: No good N exists.
Five reasonable axioms = no such A.

Since 1997, lots of good categories of spectra
exist! (with A that is commutative and associative.)
1. 1997: Elmendorf, Kriz, Mandell, May

2. 2000: Hovey, S., Smith

3,4 and 5 ... Lydakis, Schwede, ...

Theorem.
All above models define the same homotopy theory.



Spectral Algebra

Given the good categories of spectra with A, one can
easily do algebra with spectra.

Definitions:

A ring spectrum is a spectrum R with an associative
and unital multiplication u: RA R — R (with unit
S — R).

An R-module spectrum is a spectrum M with an
associative and unital action o : RA M — M.

S-modules are spectra.
St N F, — F,y1 iterated gives SP A F, = F,,.
Fits together to give SA F — F'.

S-algebras are ring spectra.



Homological Algebra vs. Spectral Algebra
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QQuasi-isomorphisms are maps which induce isomor-
phisms in homology.

Weak equivalences are maps which induce isomor-
phisms on the coefficients.



7 Z (d.g.) HZ S
Z-Mod| d.g-Mod HZ -Mod S-Mod
Z-Alg | d.g-Alg HZ-Alg |  S-Alg
~ | quasi-iso | weak equiv. - weak equiv.
D(Z) = |Ho(HZ-Mod) Ho(s) =
Ch[q-iso]~? Spectra[wk.eq.]™!

Theorem. Columns two and three are equivalent
up to homotopy.

(1) (Robinson ‘87) D(Z) ~x Ho(HZ-Mod).
(2) (Schwede-S.) Ch ~Quillen #Z-Mod.
(3) (S) DGA ’:Quillen H7 —Alg.

(4) (S.) For A. a DGA,
d.g. A.-Mod :Quillen HA.-Mod

and D(A.) ~a Ho(HA.-Mod).
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Consider DGAs as ring spectra

Definition. Two DGAs A. and B. are topologi-
cally equivalent if their associated HZ-algebras H A.
and H B. are equivalent as ring spectra (S-algebras).

Theorem. If A. and B. are topologically equivalent
DGAs, then D(A.) ~a D(B.).

Proof. This follows since
d.g. A.-Mod ~¢g HA.-Mod ~g HB.-Mod
~q d.g. B.-Mod



Example:
A = Zle;]/(e*) with de = 2 and A" = H, A
= AZ/2(042)

A and A’ are not quasi-isomorphic,
(although H,A = H.A".)

Claim: A and A’ are topologically equivalent.
Or, HA ~ HA’ as ring spectra.



Equivalences of module categories

(Morita 1958) Any equivalence of categories R-Mod =
R/ -Mod is given by tensoring with a bimodule.

(Rickard 1989, 1991) Any derived equivalence of
rings D(R) = D(R') is given by tensoring with a
complex of bimodules (a tilting complex).(  dules
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(Schwede-S. 2003) Any Quillen equivalence of mod-
ule spectra 2-Mod ~¢p R’'-Mod is given by smashing
with a bimodule spectrum (a tilting spectrum).

(Dugger-S.) Example above shows that for derived
equivalences of DGAs one must consider tilting spec-
tra, not just tilting complexes.

In fact, there is also an example of a derived equiv-
alence of DGAs which doesn’t come from a tilting
spectrum (because it doesn’t come from an underly-
ing Quillen equivalence.) (This example is based on

work by (Schlichting 2002).)



Use HH* and THH*:

For a ring R and an R-bimodule M, DGAs
with non-zero homology Hy = R and H, = M
are classified by HHZ*(R; M).

Topological Hochschild homology
Using A in place of ® one can mimic the definition
of HH for spectra to define THH.

In particular, HH}(R; M) =THH},(HR; HM).

Just as above, ring spectra are classified by
THHg”(HR; HM).

A and A’ are thus classified in these two settings by
letting R =7/2, M = 7Z/2 and n = 2.

S — H7 induces
¢ HH}(Z/2;Z/2) — THHE(Z)2;7/2).

One can calculate that A and A’ correspond to differ-
ent elements in H H* which get mapped to the same

element in TH H*.



Compute:

HHz(Z/2;Z)2) = Z]2|oy]
(Franjou, Lannes, and Schwartz 1994)
THH(Z,/2; 7./2) = Tysr]
= Az/Q(el, €, . . )7 deg(ez) = 2"
To compute ® : HH;(7Z/2) — THHE(Z/2):

In HH? 0 <+ Z/4 and 0 <> Z/2 & 7./2
In THH?* 7+ HZ/4 and 0 +» H(Z/2 & Z/2)

So (o) =T.

In HH* 02+ Aand 0 & A’

®(0?) = ®(0) = 0 since 72 = 0 and
® is a ring homomorphism.

So HA ~ HA’ as ring spectra,
although A 2 A’ as DGAs.

It follows that D(A) ~a D(A").



Example: There exist two DGAs A and B such
that

DA %JA DB, but
d.g.A-mod #¢ d.g. B-mod

Based on Marco Schlichting’s example (p > 3):

Ho(Stmod( Z/p[e]/ez)g >~ \ Ho(Stmod( Z/p?)),
ut
Stmod( Z/ple]/€*) ¢ Stmod(Z/p?)

One can find DGAs A and B such that:
Stmod( Z/ple]/€*) ~¢g d.g. A-mod
Stmod( Z/p*) ~¢ d.g.B-mod

Here A and B are the endomorphism DGAs of the
Tate resolution of a generator (Z/p in both cases):

A=7/plxy, x7| with d = 0.

B = Zz1,z7{e1)/e? = 0, ex + ze = 1% with de =
p and dz = 0.





