Topological equivalences of differential graded algebras

(Joint work with D. Dugger)

"Abelian groups up to homotopy" spectra \iff generalized cohomology theories

Examples:

1. Ordinary cohomology:

For A any abelian group, $H^*(X; A) = [X_+, K(A, n)].$

Eilenberg-Mac Lane spectrum, denoted HA. $HA_n = K(A, n)$ for $n \ge 0$.

The coefficients of the theory are given by

$$HA^*(\mathrm{pt}) = \begin{cases} A & * = 0 \\ 0 & * \neq 0 \end{cases}$$

2. Hypercohomology:

For C any chain complex of abelian groups, $\mathbb{H}^s(X;C.) \cong \bigoplus_{q-p=s} H^p(X;H_q(C.)).$ Just a direct sum of shifted ordinary cohomologies.

$$HC.^*(pt) = H_*(C.).$$

3. Complex K-theory:

 $K^*(X)$; associated spectrum denoted K.

$$K_n = \begin{cases} U & n = \text{odd} \\ BU \times \mathbb{Z} & n = \text{even} \end{cases}$$

$$K^*(\text{pt}) = \begin{cases} 0 & * = \text{odd} \\ \mathbb{Z} & * = \text{even} \end{cases}$$

4. Stable cohomotopy:

 $\pi_S^*(X)$; associated spectrum denoted S.

 $\mathbb{S}_n = S^n$, \mathbb{S} is the sphere spectrum.

 $\pi_S^*(\text{pt}) = \pi_{-*}^S(\text{pt}) = \text{stable homotopy groups of spheres.}$ These are only known in a range.

"Rings up to homotopy"

ring spectra \iff gen. coh. theories with a product

1. For R a ring, HR is a ring spectrum. The cup product gives a graded product: $HR^p(X) \otimes HR^q(X) \to HR^{p+q}(X)$

Induced by $K(R, p) \wedge K(R, q) \rightarrow K(R, p + q)$.

Definition. $X \wedge Y = X \times Y / (X \times pt) \cup (pt \times Y)$.

2. For A. a differential graded algebra (DGA), HA. is a **ring spectrum**. Product induced by $\mu: A. \otimes A. \to A.$, or $A_p \otimes A_q \to A_{p+q}$.

The groups $\mathbb{H}(X; A)$ are still determined by $H_*(A)$, but the product structure is *not* determined $H_*(A)$.

3. K is a ring spectrum;

Product induced by tensor product of vector bundles.

4. \mathbb{S} is a commutative ring spectrum.

Definitions

"Definition." A ring spectrum is a sequence of pointed spaces $R = (R_0, R_1, \dots, R_n, \dots)$ with compatibly associative and unital products $R_p \wedge R_q \to R_{p+q}$.

Definition. The suspension of a based space X is $\Sigma X = S^1 \wedge X \cong (CX \cup_X CX)/\widetilde{pt}$.

Definition. A spectrum F is a sequence of pointed spaces $(F_0, F_1, \dots, F_n, \dots)$ with structure maps $\Sigma F_n \to F_{n+1}$.

Example: S a commutative ring spectrum

Structure maps: $\Sigma S^n = S^1 \wedge S^n \xrightarrow{\cong} S^{n+1}$.

Product maps: $S^p \wedge S^q \xrightarrow{\cong} S^{p+q}$.

Actually, must be more careful here. For example: $S^1 \wedge S^1 \xrightarrow{\text{twist}} S^1 \wedge S^1$ is a degree -1 map.

History of spectra and \wedge

Boardman in 1965 defined spectra and \wedge . \wedge is only commutative and associative up to homotopy.

 A_{∞} ring spectrum = best approximation to associative ring spectrum.

 E_{∞} ring spectrum = best approximation to commutative ring spectrum.

Lewis in 1991: No good \land exists. Five reasonable axioms \Longrightarrow no such \land .

Since 1997, lots of good categories of spectra exist! (with \land that is commutative and associative.)

- 1. 1997: Elmendorf, Kriz, Mandell, May
- 2. 2000: Hovey, S., Smith
- 3, 4 and 5 ... Lydakis, Schwede, ...

Theorem.

All above models define the same homotopy theory.

Spectral Algebra

Given the good categories of spectra with \wedge , one can easily do algebra with spectra.

Definitions:

A ring spectrum is a spectrum R with an associative and unital multiplication $\mu: R \wedge R \to R$ (with unit $\mathbb{S} \to R$).

An R-module spectrum is a spectrum M with an associative and unital action $\alpha: R \wedge M \to M$.

 \mathbb{S} -modules are spectra.

 $S^1 \wedge F_n \to F_{n+1}$ iterated gives $S^p \wedge F_q \to F_{p+q}$. Fits together to give $\mathbb{S} \wedge F \to F$.

 \mathbb{S} -algebras are ring spectra.

Homological Algebra vs. Spectral Algebra

\mathbb{Z}	\mathbb{Z} (d.g.)	S
\mathbb{Z} -Mod	d.gMod	S-Mod
=Ab	= Ch	= $Spectra$
\mathbb{Z} -Alg =	d.gAlg =	S-Alg =
$\mathcal{R}ings$	$\mathcal{D}GAs$	$\mathcal{R}ing\ spectra$

\mathbb{Z}	\mathbb{Z} (d.g.)	$H\mathbb{Z}$	S
\mathbb{Z} -Mod	d.gMod	$H\mathbb{Z}$ -Mod	S-Mod
Z-Alg	d.gAlg	H ℤ-Alg	S-Alg

\mathbb{Z}	\mathbb{Z} (d.g.)	$H\mathbb{Z}$	S
\mathbb{Z} -Mod	d.gMod	$H\mathbb{Z}$ -Mod	S-Mod
\mathbb{Z} -Alg	d.gAlg	H ℤ-Alg	S-Alg
\cong	quasi-iso	weak equiv.	weak equiv.

 $Quasi\mbox{-}isomorphisms$ are maps which induce isomorphisms in homology.

Weak equivalences are maps which induce isomorphisms on the coefficients.

\mathbb{Z}	\mathbb{Z} (d.g.)	$H\mathbb{Z}$	S
\mathbb{Z} -Mod	d.gMod	$H\mathbb{Z}\operatorname{-Mod}$	S-Mod
\mathbb{Z} -Alg	d.gAlg	H ℤ-Alg	S-Alg
\overline{a}	quasi-iso	weak equiv.	weak equiv.
	$\mathcal{D}(\mathbb{Z}) =$	$\mathcal{H}o(H\mathbb{Z}\operatorname{-Mod})$	$\mathcal{H}o(S) =$
	$Ch[q-iso]^{-1}$		$Spectra[wk.eq.]^{-1}$

Theorem. Columns two and three are equivalent up to homotopy.

- (1) (Robinson '87) $\mathcal{D}(\mathbb{Z}) \simeq_{\Delta} \mathcal{H}o(H\mathbb{Z}\text{-Mod}).$
- (2) (Schwede-S.) $Ch \simeq_{\text{Quillen}} H\mathbb{Z}$ -Mod.
- (3) (S.) $\mathcal{D}GA \simeq_{\text{Quillen}} H\mathbb{Z}$ -Alg.
- (4) (S.) For A. a DGA, d.g. A.-Mod $\simeq_{\text{Quillen}} HA$.-Mod and $\mathcal{D}(A) \simeq_{\Delta} \mathcal{H}o(HA)$.-Mod).

k -> k[x]

Consider DGAs as ring spectra

Definition. Two DGAs A. and B. are topologically equivalent if their associated $H\mathbb{Z}$ -algebras HA. and HB. are equivalent as ring spectra (S-algebras).

Theorem. If A and B are topologically equivalent DGAs, then $\mathcal{D}(A) \simeq_{\Delta} \mathcal{D}(B)$.

Proof. This follows since d.g. A.-Mod $\simeq_Q HA$.-Mod $\simeq_Q HB$.-Mod $\simeq_Q d.g. B$.-Mod

Example:

$$A = \mathbb{Z}[e_1]/(e^4)$$
 with $de = 2$ and $A' = H_*A$
= $\Lambda_{\mathbb{Z}/2}(\alpha_2)$

degree
$$A$$
 $A' = H_*A$

$$3 \quad Z = \langle e^3 \rangle$$

$$1 \quad Z = \langle e^2 \rangle \quad Z/2 = \langle \alpha \rangle$$

$$1 \quad Z = \langle e7 \rangle$$

$$0 \quad Z = \langle 1 \rangle \quad Z/2 = \langle 1 \rangle$$

A and A' are *not* quasi-isomorphic, (although $H_*A \cong H_*A'$.)

Claim: A and A' are topologically equivalent. Or, $HA \simeq HA'$ as ring spectra.

Equivalences of module categories

(Morita 1958) Any equivalence of categories R-Mod \cong R'-Mod is given by tensoring with a bimodule.

(Rickard 1989, 1991) Any derived equivalence of rings $\mathcal{D}(R) \cong_{\Delta} \mathcal{D}(R')$ is given by tensoring with a complex of bimodules (a tilting complex).

(Schwede-S. 2003) Any Quillen equivalence of module spectra R-Mod $\simeq_Q R'$ -Mod is given by smashing with a bimodule spectrum (a tilting spectrum).

(Dugger-S.) Example above shows that for derived equivalences of DGAs one must consider tilting spectra, not just tilting complexes.

In fact, there is also an example of a derived equivalence of DGAs which doesn't come from a tilting spectrum (because it doesn't come from an underlying Quillen equivalence.) (This example is based on work by (Schlichting 2002).)

Use HH^* and THH^* :

For a ring R and an R-bimodule M, DGAs with non-zero homology $H_0 = R$ and $H_n = M$ are classified by $HH_{\mathbb{Z}}^{n+2}(R; M)$.

Topological Hochschild homology

Using \wedge in place of \otimes one can mimic the definition of HH for spectra to define THH.

In particular, $HH_{\mathbb{Z}}^*(R; M) = THH_{H\mathbb{Z}}^*(HR; HM)$.

Just as above, ring spectra are classified by $THH^{n+2}_{\mathbb{S}}(HR;HM)$.

A and A' are thus classified in these two settings by letting $R = \mathbb{Z}/2$, $M = \mathbb{Z}/2$ and n = 2.

 $\mathbb{S} \to H\mathbb{Z}$ induces $\Phi: HH_{\mathbb{Z}}^*(\mathbb{Z}/2; \mathbb{Z}/2) \to THH_{\mathbb{S}}^*(\mathbb{Z}/2; \mathbb{Z}/2).$

One can calculate that A and A' correspond to different elements in HH^4 which get mapped to the same element in THH^4 .

Compute:

$$HH_{\mathbb{Z}}^*(\mathbb{Z}/2;\mathbb{Z}/2) = \mathbb{Z}/2[\sigma_2]$$

(Franjou, Lannes, and Schwartz 1994)

$$THH_{\mathbb{S}}^*(\mathbb{Z}/2;\mathbb{Z}/2) = \Gamma_{\mathbb{Z}/2}[\tau_2]$$

 $\cong \Lambda_{\mathbb{Z}/2}(e_1, e_2, \ldots), \operatorname{deg}(e_i) = 2^i.$

To compute $\Phi: HH_{\mathbb{Z}}^*(\mathbb{Z}/2) \to THH_{\mathbb{S}}^*(\mathbb{Z}/2)$:

In HH^2 : $\sigma \leftrightarrow \mathbb{Z}/4$ and $0 \leftrightarrow \mathbb{Z}/2 \oplus \mathbb{Z}/2$ In THH^2 : $\tau \leftrightarrow H\mathbb{Z}/4$ and $0 \leftrightarrow H(\mathbb{Z}/2 \oplus \mathbb{Z}/2)$

So $\Phi(\sigma) = \tau$.

In HH^4 : $\sigma^2 \leftrightarrow A$ and $0 \leftrightarrow A'$.

 $\Phi(\sigma^2) = \Phi(0) = 0$ since $\tau^2 = 0$ and Φ is a ring homomorphism.

So $HA \simeq HA'$ as ring spectra, although $A \not\simeq A'$ as DGAs.

It follows that $\mathcal{D}(A) \simeq_{\Delta} \mathcal{D}(A')$.

Example: There exist two DGAs A and B such that

$$\mathcal{D}_A \cong_{\Delta} \mathcal{D}_B$$
, but d.g. A -mod $\not\simeq_Q$ d.g. B -mod

Based on Marco Schlichting's example (p > 3):

$$\mathcal{H}o(\operatorname{Stmod}(\mathbb{Z}/p[\epsilon]/\epsilon^2)) \cong_{\Delta} \mathcal{H}o(\operatorname{Stmod}(\mathbb{Z}/p^2)),$$
but
$$\operatorname{Stmod}(\mathbb{Z}/p[\epsilon]/\epsilon^2) \not\simeq_{Q} \operatorname{Stmod}(\mathbb{Z}/p^2)$$

One can find DGAs A and B such that:

Stmod(
$$\mathbb{Z}/p[\epsilon]/\epsilon^2$$
) \simeq_Q d.g. A -mod
Stmod(\mathbb{Z}/p^2) \simeq_Q d.g. B -mod

Here A and B are the endomorphism DGAs of the Tate resolution of a generator (\mathbb{Z}/p) in both cases):

$$A = \mathbb{Z}/p[x_1, x_1^{-1}]$$
 with $d = 0$.

$$B = \mathbb{Z}[x_1, x_1^{-1}] \langle e_1 \rangle / e^2 = 0, ex + xe = x^2 \text{ with } de = p \text{ and } dx = 0.$$