Resolutions with Structure

E.L. Green

Commutative Algebra: Interactions with Homological Algebra and Representation Theory

MSRI February 2003

NOTATION:

K a field

$$S = K < x_1, \dots, x_n > \text{ or } S = KQ.$$

$$S = S_0 \oplus S_1 \oplus S_2 \cdots$$
 with

$$S_0 = \prod_{i=1}^n K$$
 and S_i finite dim'l over K

Here S_i is the K-span of the monomials of degree i or the paths of length i.

S generated in degrees 0, 1.

$$J = S_1 \oplus S_2 \oplus S_3 \oplus \cdots$$

So
$$J = \langle x_1, \dots, x_n \rangle$$
 or $J = \langle$ arrows of $Q \rangle$

I an ideal in S with $I \subseteq J^2$.

$$R = S/I$$
 and $\mathbf{r} = J/I$.

Note that S has a Gröbner basis theory: that is,

- 1. S has a multiplicative K-basis, \mathcal{B} ; i.e., if $b_1, b_2 \in \mathcal{B}$ then $b_1b_2 \in \mathcal{B}$ or $b_1b_2 = 0$.
- 2. There is an admissible order on \mathcal{B} ; i.e.,
 - (a) > is a well-order.
 - (b) if $b_1,b_2,b_3\in\mathcal{B}$ and $b_1>b_2$ then $b_1b_3>b_2b_3$ if both not 0 and $b_3b_1>b_3b_2$ if both not 0
 - (c) if $b_1, b_2, b_3 \in \mathcal{B}$ and $b_1 = b_2b_3$ then $b_1 \geq b_2$ and $b_1 \geq b_3$.

We call $(\mathcal{B}, >)$ an ordered multiplicative basis.

- 1. $S=K< x_1,\ldots,x_n>$ with $\mathcal{B}=\{\text{monomials}\}.$ Thus $R=K< x_1,\ldots,x_n>/I$ with $I\subseteq < x_1,\ldots,x_n>^2.$
- 2. S = KQ with $\mathcal{B} = \{\text{paths}\}\$

Note that if M is an S_0 - S_0 bimodule then, the tensor algebra

$$S=T_{S_0}(M)=S_0\oplus\ M\oplus\ (M\otimes_{S_0}M)\oplus\cdots$$
 is a path algebra.

Thus $K < x_1, \ldots, x_n >$ is a path algebra.

Graded algebras

If I can be generated by homogeneous elements of S, then R has an induced grading from S.

In this case, write $R = R_0 \oplus R_1 \oplus R_2 \oplus \cdots$

Note that
$$R_0 = \prod_{i=1}^n K$$
 and $\mathbf{r} = R_1 \oplus R_2 \oplus \cdots$

Graded R-modules have graded projective resolutions.

Whether or not R is graded, we will denote $R/\mathbf{r} = S/J = \prod_{i=1}^{n} K$ by R_0 .

 $E(R) = \bigoplus_{m \geq 0} \mathsf{Ext}_R^m(R_0, R_0)$, a ring via the Yoneda product.

If M is an R-module, $E(M) = \bigoplus_{m \geq 0} \mathsf{Ext}^m_R(M, R_0).$

E(M) is naturally an E(R)-module.

Review of Koszul Algebras

Assume that I is generated by homogeneous elements.

R = S/I is Koszul if R_0 has a linear (graded) projective resolution:

$$\cdots \rightarrow P^2 \rightarrow P^1 \rightarrow P^0 \rightarrow R_0 \rightarrow 0$$

 P^n generated in degree n.

Properties

- 1. I is generated in degree 2.
- 2. $E(R) = \operatorname{Ext}_R^*(R_0, R_0)$ is generated in degrees 0 and 1.
- 3. E(R) is a Koszul algebra.

- 4. R^{Op} is a Koszul algebra.
- 5. The Koszul complex is exact.
- 6. If R = KQ/I, then $E(R) = KQ^{\mathsf{OP}}/< I_2^{\perp}>$.
- 7. $\operatorname{Ext}^*(-,R_0):\operatorname{Mod}(R)\to\operatorname{Mod}(E(R))$ is a duality on the category of Koszul modules.

I. D-Koszul Algebras

Joint with E. N. Marcos, Brazil, R. Martínez-Villa, Mexico, and Pu Zhang, China

Assume that I can be generated by homogeneous elements.

 $R = R_0 \oplus R_1 \oplus \cdots$ is d-Koszul if there is a graded projective resolution

$$\cdots \rightarrow P^2 \rightarrow P^1 \rightarrow P^0 \rightarrow R_0 \rightarrow 0$$

with degree

$$P^n = \{ \begin{array}{c} \frac{n-1}{2}d, & \text{if } n \text{ odd,} \\ \frac{n}{2}d, & \text{if } n \text{ even.} \end{array}$$

Although restrictive, there are many such algebras. Introduced by Roland Berger.

Proposition 1 If R is d-Koszul with P^2 generated in degree d, I can be generated in degree d.

Theorem 2 If R = KQ/I and I is generated in degree d then R is d-Koszul if and only if E(R) is generated in degrees 0,1 and 2.

Proposition 3 If R is d-Koszul then $E^{ev}(R) = \bigoplus_{n \geq 0} Ext^{2n}(R_0, R_0)$ is a Koszul algebra.

If R is d-Koszul, then

$$\mathsf{Ext}^{odd}(R_0,R_0)\cdot\mathsf{Ext}^{odd}(R_0,R_0)=0.$$

Regrade E(R):

$$E(R)_0 = \text{Ext}^0(R_0, R_0)$$

$$E(R)_1 = \operatorname{Ext}^1(R_0, R_0) \oplus \operatorname{Ext}^2(R_0, R_0)$$

$$E(R)_2 = \text{Ext}^3(R_0, R_0) \oplus \text{Ext}^4(R_0, R_0)$$

In general,

$$E(R)_n = \operatorname{Ext}^{2n-1}(R_0, R_0) \oplus \operatorname{Ext}^{2n}(R_0, R_0)$$

Theorem 4 If R is d-Koszul then E(R) (regraded) is a Koszul algebra.

Proposition 5 If R is d-Koszul then R^{OP} is d-Koszul.

There is a generalized Koszul complex:

Let $V = R_1$ so that $KQ = T_R(V)$ where $R = \prod_{i=1}^n K$.

We let V^a denote $\otimes_R^a V$.

G = span of a set of generators of I.

 $G \subset V^d$

Let $S^0 = R$, $S^1 = V$.

For $n \geq 2$,

$$S^n =$$

 $\begin{array}{ccc} \sum_{i} V^{i} \otimes_{R_{\mathbf{o}}} G \otimes_{R_{\mathbf{o}}} V^{(dn/2)-d-i}, & \text{if } n \text{ even} \\ \sum_{i} V^{i} \otimes_{R_{\mathbf{o}}} G \otimes_{R_{\mathbf{o}}} V^{(d(n-1)/2)-d-i+1}, & \text{if } n \text{ odd} \end{array}$

Note that $S^n \subset V^{dn/2}$ or $S^n \subset V^{d(n-1)/2+1}$.

$$Q^n = R \otimes_{R_{\mathbf{b}}} S^n.$$

There is a natural $d^n: Q^n \to Q^{n-1}$

$$d^n(\sum \lambda \otimes [v_1 \otimes \cdots \otimes v_{dn/2}]) =$$

$$\sum (\lambda v_1) \otimes [v_2 \otimes \cdots \otimes v_{dn/2}]$$

or

$$d^{n}(\sum \lambda \otimes [v_{1} \otimes \cdots \otimes v_{d(n-1)/2+1}]) =$$

$$\sum (\lambda(v_1 \otimes \cdots \otimes v_{d-1})) \otimes [v_d \otimes \cdots \otimes v_{d(n-1)/2+1}]$$

Proposition 6 $(Q^{\bullet}, d^{\bullet})$ is a complex.

Theorem 7 Let R = KQ/I with I generated in degree d. Then R is d-Koszul if and only if $(Q^{\bullet}, d^{\bullet})$ is a projective resolution of R_0 .

Let G be a subspace of V^d and let $I = \langle G \rangle$ in $KQ = T_R(V)$.

Then $G^{\perp} \subset \otimes^d V^*$

Consider $A = T_R(V^*)/< G^{\perp}>$. This is a graded algebra.

Theorem 8 (R.Berger) Keeping the above notation, if R = KQ/ < G > is a d-Koszul algebra then $\operatorname{Ext}^n(R_0, R_0)$ is isomorphic to $A_{dn/2}$ if n is even and

 $A_{d(n-1)/2+1}$ if n is odd.

We show that the "induced" algebra structure from A is, in fact, the algebra structure of $Ext^*(R_0, R_0)$.

There is a classification of monomial d-Koszul algebras.

II. δ -Koszul Algebras

Let $I \subset J^2$ be generated by elements of degree d. Then $R = R_0 \oplus R_1 \oplus \cdots$.

ASSUME that there is an admissble order such that I has a Gröbner basis consisting of elements of degree d.

Consider a minimal graded projective resolution:

$$\cdots \to P^2 \to P^1 \to P^0 \to R_0 \to 0$$

Suppose there is a function

 $\delta: \mathbb{N} \to \mathbb{N}$ such that P^n is generated in degree $\delta(n)$. We say R is δ -preKoszul. If E(R) is finitely generated, we say R is δ -Koszul.

R is Koszul iff $\delta(n) = n$.

R is d-Koszul iff

$$\delta(n) = \{ \begin{array}{c} \frac{n-1}{2} d & \text{if } n \text{ odd,} \\ \frac{n}{2} d, & \text{if } n \text{ even.} \end{array}$$

Are there any other δ s possible? What are they? Is E(R) special for these δ s?

We have $\delta(0) = 0, \delta(1) = 1$, and $\delta(2) = d$.

Suppose 0 < c < d and $d \equiv r \mod(c)$ with $0 < r \le c$. Note if c = 1, r = 1.

Let $\delta_{c,d}(n)$ be defined by

1.
$$\delta_{c,d}(0) = 0, \delta_{c,d}(1) = 1$$
, and $\delta_{c,d}(2) = d$.

2. For $n \geq 3$,

$$\delta_{c,d}(n)=\{\begin{array}{c} \frac{n-1}{2}(d+c)-\frac{n-3}{2}r, & \text{if } n \text{ odd},\\ \\ \frac{n}{2}d+\frac{n-2}{2}(c-r), & \text{if } n \text{ even}. \end{array}$$

Note: if d=2 (so c=1 and r=1) then $\delta_{1,2}(n)=n$. So we have Koszul is the same as $\delta_{1,2}$ -(pre)Koszul.

If d > 2 and c = 1 and hence r = 1, then

$$\delta_{1,d} = \{ \begin{array}{c} \frac{n-1}{2}d, & \text{if } n \text{ odd}, \\ \\ \frac{n}{2}d, & \text{if } n \text{ even}. \end{array}$$

We have d-Koszul is the same as $\delta_{1,d}$ -(pre)Koszul.

Let R be a d-Koszul algebra.

A module M is d-Koszul if there is a projective resolution

$$\cdots \rightarrow P^2 \rightarrow P^1 \rightarrow P^0 \rightarrow M \rightarrow 0$$

such that if n is even, P^n is generated in degree dn/2 and if n is odd, P^n is generated in degree d(n-1)/2+1.

Theorem 9 If R is d-Koszul and M is a d-Koszul module then

- 1. $\mathsf{Ext}^{even}(M,R_0)$ is a Koszul module over the Koszul algebra $\mathsf{Ext}^{even}(R_0,R_0)$.
- 2. $Ext^*(M, R_0)$, after regrading, is a Koszul module over (the regraded) Koszul algebra E(R).

- **Theorem 10** 1. Let R = KQ/I such that I has a Gröbner basis consisting of homogeneous elements of degree d for some admissible order. If R is δ -preKoszul then there exist c,d, 0 < c < d such that $\delta = \delta_{c,d}$.
 - 2. For each c,d, 0 < c < d, there is a $\delta_{c,d}$ -preKoszul algebra RKQ/I such that I has a Gröbner basis consisting of homogeneous elements of degree d for some admissible order.

Theorem 11 Let 0 < c < d and $r \equiv d \mod(c)$, 0 < r < c. Then

- 1. If d=2 and R is a $\delta_{1,2}$ -preKoszul algebra then E(R) is generated in degrees 0,1. Hence R is $\delta_{1,2}$ -Koszul.
- 2. If d>1 and c=1 and R is a $\delta_{1,d}$ -preKoszul algebra then E(R) is generated in degrees 0,1,2. Hence R is $\delta_{1,2}$ -Koszul.
- 3. If d>1,c>1, and r=0 (i.e., $c\mid d$) and R=KQ/I a $\delta_{c,d}$ -preKoszul algebra and I with a degree d homogeneous Gröbner basis then E(R) is generated in degrees 0,1,2,3. Hence R is $\delta_{1,2}$ -Koszul.
- 4. If d>1,c>1, and $r\neq 0$ and R is a $\delta_{c,d}$ -preKoszul monomial algebra then E(R) is not finitely generated. Hence R is not $\delta_{c,d}$ -Koszul.

Questions: Can there other δs if I does not have Gröbner basis of homogeneous elements of one degree? Can there be δ -Koszul algebras for new δs ?

III. Quasi-Koszul Algebras and their Resolutions

joint with Yuriy Drozd, Kiev

We now look at NONgraded algebras.

We keep the same notational conventions; i.e., $S=K< x_1,\ldots,x_n>$ or S=KQ I is an ideal in S with $I\subseteq J^2$ R=S/I.

Two Examples:

I:
$$R = K < x, y, z > /(x^2 - z^3)$$

 $E(R) = \operatorname{Ext}_{R}^{*}(K, K)$ is not a Koszul algebra.

$$\begin{pmatrix}
x \\
0 \\
-z^2
\end{pmatrix}$$

$$R^3 \xrightarrow{(x,y,z)} R \to K \to 0$$

II:
$$R = K < x, y > /(xy - z^3)$$

E(R) is a Koszul algebra

$$\begin{pmatrix}
y \\
0 \\
-z^2
\end{pmatrix}$$

$$R^3 \xrightarrow{(x,y,z)} R \to K \to 0$$

 $\underline{\mathsf{Def}}$: A K-algebra R is a quasi-Koszul algebra with respect to an ideal $\mathbf r$ if

- 1. R/\mathbf{r} is $\prod_{i=1}^{n} K$.
- 2. $E(R) = \operatorname{Ext}_R^*(R/\mathbf{r}, R/\mathbf{r})$ is a Koszul algebra.

 $\operatorname{Gr}_{\mathbf{r}}(R) = R/\mathbf{r} \oplus \mathbf{r}/\mathbf{r}^2 \oplus \mathbf{r}^2/\mathbf{r}^3 \oplus \cdots$ assoc. graded with respect to the **r**-adic filtration

<u>Def</u> Let M be an R-module. We say a projective resolution, $(P^{\bullet}, d^{\bullet})$, of M is *quasi-linear* if

- 1. each P^n is finitely generated
- 2. $d^n(P^n) \subseteq \mathbf{r}P^{n-1}$
- 3. the complex $(\operatorname{Gr}_{\mathbf{r}}(P^{\bullet}), \widehat{d}^{\bullet})$ is a projective resolution of the $\operatorname{Gr}_{\mathbf{r}}(R)$ -module $\operatorname{Gr}_{\mathbf{r}}(M)$.

$$Gr_{\mathbf{r}}(M) = M/\mathbf{r}M \oplus \mathbf{r}M/\mathbf{r}^2M \oplus \mathbf{r}^2M/\mathbf{r}^3M \oplus \cdots$$

$$\widehat{d}^n(x + \mathbf{r}^k P^n) = d^n(x) + \mathbf{r}^{k+1} P^{n-1}$$

$$\begin{array}{l} ((\mathbf{r}^{k-1}P^n \to \mathbf{r}^kP^{n-1} \to \mathbf{r}^kP^{n-1}/\mathbf{r}^{k+1}P^{n-1}\\ \text{induces}\\ \mathbf{r}^{k-1}P^n/\mathbf{r}^kP^n \to \mathbf{r}^kP^{n-1}/\mathbf{r}^{k+1}P^{n-1})) \end{array}$$

Theorem 12 Suppose that there is a quasilinear resolution of R/\mathbf{r} . Then

- 1. E(R) is isomorphic to $E(Gr_{\mathbf{r}}(R))$. In particular, R is a quasi-Koszul algebra and $E^2(R)$ is isomorphic to $Gr_{\mathbf{r}}(R)$.
- 2. If an R-module M has a quasi-linear resolution, $E(M) = \operatorname{Ext}_R^*(M,R/\mathbf{r})$ is a Koszul E(R)-module and $E^2(M)$ is isomorphic to $\operatorname{Gr}_{\mathbf{r}}(R)$.

If $x \in S \setminus \{0\}$, $x = x_k + \cdots + x_{k+r}$, where $x_i \in S_i$ and $x_k \neq 0$.

Set
$$u(x) = x_k$$
, $t(x) = x - x_k$.

Let $\mathcal{F} = \{f_i\}_{i \in \mathcal{I}}$ be a set of generators of I (R = S/I)

 $H = \langle \{u(f_i)\} \rangle_{i \in \mathcal{I}}$. H is a homogeneous ideal in S.

 $\Gamma = S/H = \Gamma_0 \oplus \Gamma_1 \oplus \cdots$ -grading induced from the grading in S.

There is a natural surjection $\varphi : \Gamma \to Gr_{\mathbf{r}}(R)$. Not an iso in general:

$$\underline{\mathsf{Ex}}\ R = K < x, y, z > / < \mathcal{F} >$$
, $\mathcal{F} = \{xy + z^3, y^2\}$

 $H=< xy, y^2 > \text{ and } \varphi \text{ is not an iso.}$

> admissible order: deg-lex with deg(x) = 3, deg(y) = deg(z) = 1.

 \mathcal{F} not a Gröbner basis of I.

CONDITION (*):

For each $f \in \mathcal{F}$, Tip(f) = Tip(u(f))

Let
$$Q = \{u(f)\}_{f \in \mathcal{F}}$$
.

Example above satisfies condition (*).

Theorem 13 Keeping the notations above, assume that > is an admissible order on \mathcal{B} , the multiplicative basis of S. Assume that \mathcal{F} satisfies condition (*). Suppose that \mathcal{F} is a Gröbner basis for I with respect to >. Then

- 1. Q is a Gröbner basis for H with respect to >.
- 2. $\varphi: S/H \to Gr_{\mathbf{r}}(R)$ is an isomorphism.

Putting it all together:

 $S = S_0 \oplus S_1 \oplus \cdots$, S has an ordered multiplicative basis $\mathcal{B}, >$ that respects the grading.

 $J=S_1\oplus S_2\oplus \cdots$ and S generated in degrees 0,1.

I is an ideal generated by $\mathcal{F} \subset J^2$

Assume \mathcal{F} satisfies condition (*); i.e., $f \in \mathcal{F}$ implies Tip(f) = Tip(u(f)).

H ideal generated by $\mathcal{Q} = \{u(f)\}_{f \in \mathcal{F}}$. $\Gamma = S/H$.

Theorem 14 Keeping the above notation and assumptions, if \mathcal{F} is a Gröbner basis for I with respect to > and \mathcal{Q} consist of quadratic elements, then R/\mathbf{r} has quasi-linear projective resolution. In this case,

- 1. R is a quasi-Koszul algebra.
- 2. $S/H \simeq Gr_{\mathbf{r}}(R)$ is a Koszul algebra.
- 3. $Ext_R^*(R/\mathbf{r}, R/\mathbf{r}) \simeq Ext_{Gr_\mathbf{r}(R)}^*(R/\mathbf{r}, R/\mathbf{r})$ is a Koszul algebra.
- 4. $E^{2}(R) \simeq Gr_{r}(R)$.

Two Examples:

I:
$$R = K < x, y, z > /(x^2 - z^3)$$

 $E(R) = \operatorname{Ext}_{R}^{*}(K, K)$ is not a Koszul algebra.

$$\begin{pmatrix}
x \\
0 \\
-z^2
\end{pmatrix}$$

$$R^3 \xrightarrow{(x,y,z)} R \to K \to 0$$

 $\mathcal{F} = \{x^2 - z^3\}$ is NOT a Gröbner basis for $< x^2 - z^3 >$ for any order.

II:
$$R = K < x, y > /(xy - z^3)$$

E(R) is a Koszul algebra

$$\begin{pmatrix}
y \\
0 \\
-z^2
\end{pmatrix}$$

$$R^3 \xrightarrow{(x,y,z)} R \to K \to 0$$

Take > to be deg-lex with deg(x) = 3, deg(y) = deg(z) = 1.

 $\mathcal{F} = \{xy-z^3\}$ IS a Gröbner basis for $< xy-z^3>$ and $\mathcal{Q} = \{xy\}$ is a quadratic Gröbner basis for $\mathrm{Gr}_{\mathbf{r}}(R)$.

QUESTIONS:

- 1. If $\mathcal F$ satisfies (*) but is not a Gröbner basis for I, can $\varphi:S/H\to\operatorname{Gr}_{\mathbf r}(R)$ be an isomorphism?
- 2. Can there be quasi-Koszul algebras (i.e., E(R) Koszul) but R/\mathbf{r} does not have a quasi-linear projective resolution?