Depth, Detection, Something and Something

(I can't remember)

Jon F. Carlson

University of Georgia, Athens, Georgia, USA jfc@sloth.math.uga.edu http://www.math.uga.edu/˜jfc

1

 $G =$ a finite group (a *p*-group)

 $k = a$ field of characteristic p

The cohomology ring $H^*(G, k)$ is a finitely generated graded commutative k-algebra.

Problems

- How are the properties of the group reflected in the structure of the cohomology ring?
- How are cohomology rings special?

A lot is known

• (Quillen) Let $V_G(k)$ denote the maximal ideal spectrum of $H^*(G,k)$. Then

 $V_G(k) = \bigcup_{E} \text{res}_{G,E}^*(V_E(k))$

where E runs through the maximal elementary abelian p -subgroups of G and

 $res_{G,E}: \mathrm{H}^*(G,k) \longrightarrow \mathrm{H}^*(E,k)$

is the restriction map.

• (Duflot) The depth of $H^*(G, k)$ is at least equal to the p-rank of the center of a Sylow p-subgroup of G.

Examples

Suppose that $G \cong (\mathbb{Z}/p\mathbb{Z})^n$ is an elementary abelian group of order p^n . Then

$$
H^*(G,k) \cong \begin{cases} k[\zeta_1,\ldots,\zeta_n] \otimes \Lambda(\eta_1,\ldots,\eta_n) & \text{if } p > 2\\ k[\zeta_1,\ldots,\zeta_n] & \text{if } p = 2 \end{cases}
$$

where $deg(\zeta_i) = 2$, $deg(\eta_i) = 1$ when $p > 2$ and $deg(\zeta_i) = 1$ 1 when $p = 2$.

Suppose that $p = 2$ and G is a dihedral group of order 8. Then

 $H^*(G,k) \cong k[z,y,x]/(zy)$ where $deg(z) = deg(y) = 1$ and $deg(x) = 2$.

Suppose that $p = 2$ and G is the group of order 128 generated by g_1, \ldots, g_7 with relations

$$
g_1^2 = g_5 g_6 g_7,
$$

\n
$$
g_5^2 = g_7,
$$

\n
$$
g_4^{g_1} = g_4 g_5 g_6 g_7,
$$

\n
$$
g_4^{g_2} = g_2 g_3,
$$

\n
$$
g_4^{g_3} = g_4 g_6 g_7,
$$

\n
$$
g_5^{g_4} = g_5 g_7,
$$

\n
$$
g_6^{g_2} = g_6 g_7,
$$

\n
$$
g_7^{g_3} = g_4 g_6 g_7,
$$

\n
$$
g_5^{g_2} = g_5 g_6,
$$

\n
$$
g_5^{g_4} = g_5 g_7,
$$

\n
$$
g_6^{g_2} = g_6 g_7.
$$

Then $H^*(G, k) \cong k[z, y, x, w, v, u, t, s]/\mathcal{I}$ where the degrees of the variables are $1, 1, 2, 2, 2, 3, 3, 4$ and the ideal $\mathcal I$ is generated by the elements

 $zy, \quad y^2, \quad z^3 + yx + zv, \quad zx + yx, \quad yw, \quad z^2w + zt,$ $x^2 + xv$, yu, yt, $yxv + xu + xt$, $z^2u + xu + vu$, $xw^2 + zwu + ut$, $w^2v + t^2$, $zvt + z^2s + u^2 + ut$.

Detection

Let $\mathcal H$ be a collection of subgroups of G . We say that the cohomology of G is detected on H if the map

$$
\prod_{H \in \mathcal{H}} \operatorname{res}_{G,H} : \quad \operatorname{H}^*(G,k) \longrightarrow \prod_{H \in \mathcal{H}} \operatorname{H}^*(H,k)
$$

is injective.

In other words, the intersection of the kernels of the restriction maps to the elements of H is the zero ideal.

Theorem 1. *Suppose that the cohomology ring* $H^*(G, k)$ *has depth* d*. Then the cohomology is detected on the centralizers of the elementary abelian* p*-subgroups of rank* d*.*

Let

- $d =$ depth of $H^*(G, k)$.
- $s =$ least t such that $H^*(G, k)$ is detected on the centralizers of the elementary abelian p-subgroups of rank t.
- $a =$ least t such that $H^*(G, k)$ has an associated prime $\mathfrak p$ with dim $\mathrm{H}^*(G,k)/\mathfrak p = t$.

We know that

$$
d \le s \le a
$$

Question: Is $d = a$ always?

Example

Let $R \, \subseteq \, k[z,y]$ be the subalgebra generated by the elements

1, z^2 , z^3 , zy , y

Alternatively,

$$
R \cong k[a, b, c, d]/(a^3 - b^2, ac - bd, c^2 - ad^2)
$$

Then R is an integral domain with depth 1 and Krull dimension 2.

Question: What can we know about rings in which the depth is determined by the associated primes.

Isomorphisms

Let $p=2,\,k=\mathbb{F}_2,$ and let $\begin{array}{ccc} & -1 & & \\ & -1 & 2 & \\ & -1 & 2 & \\ \end{array}$

$$
D_{2^n} = \langle u, v | u^2 = v^2 = (uv)^{2^{n-1}} = 1 \rangle.
$$

Then

 $H^*(D_{2^n}, k) \cong k[z, y, x]/(zy)$

where the degrees of z, y and x are 1, 1 and 2.

So we have

$$
1 \longrightarrow C_2 \longrightarrow D_{16} \longrightarrow D_8 \longrightarrow 1
$$

and an inflation map

$$
\inf: \mathrm{H}^*(D_8,k) \longrightarrow \mathrm{H}^*(D_{16},k).
$$

But this is not an isomorphism!

The spectral sequence

 $E_2^{r,s} \cong H^r(D_8, H^s(C_2, k)) \cong H^r(D_8, k) \otimes H^s(C_2, k) \Rightarrow H^{r+s}(D_{16}, k)$

$$
d_2: E_2^{r,s} \longrightarrow E_2^{r+2,s-1}
$$

Note that $H^s(C_2, k) \cong k$ for all $s \geq 0$.

Remember $H^*(D_8, k) \cong k[z, y, x]/(zy)$ and $H^*(C_2, k) \cong$ $k[u]$

So the spectral sequence looks like

That is, d_2 on the odd rows is multiplication by \boldsymbol{x} and is 0 on the even rows.

So the E_3 page of the spectral sequence looks like

Consequently, $H^*(D_{16}, k) \cong k[z, y, u^2]/(zy)$

12

General Method

Suppose that $H^2(G, k)$ $(k = \mathbb{F}_p)$ has an element ζ such that

$$
\mathrm{H}^*(G,k)\cong A\otimes_k k[\zeta]
$$

for A some subalgebra, and

$$
\beta(\zeta) \in \zeta \operatorname{H}^*(G, k)
$$

where β is the Bockstein homomorphism. Then there is an extension

 $1 \longrightarrow C_p \longrightarrow \hat{G} \longrightarrow G \longrightarrow 1$

such that $H^*(\hat{G}, k) \cong H^*(G, k)$.

Some extensions of this type were investigated by Browder-Pakianathan, Weigel. But there are others.

Let $P = k[z, y, x, w, v, u, t, s]$ where the variables are in degrees $1, 1, 2, 2, 2, 3, 3, 4$. The for a particular family the cohomology ring has the form $\mathrm{H}^*(G,k) \cong P/\mathcal{I}$ where

- a. For the group of order 256, $\mathcal{I} := \langle z^2, zy, y^3 + yw, \rangle$ $zx + yw, zw + yw, y^2x + yu, w^2 + yu, zu, zt,$ $yx^2 + xu + wu + wt, y^2t + wu, x^3 + yxt + y^2s + t^2,$ $x^2w + yxu + yxt + ut, u^2$.
- b. For the group of order 128, $\mathcal{I} := \langle z^2, zy, y^3 + yw, \rangle$ $zx + yw, zw + yw, y^2x + yu, w^2 + yu, zu, zt,$ $yx^2 + xu + wu + wt$, $y^2t + wu$, $x^3 + yxt + y^2s + t^2$, $x^2w + yxu + yxt + ut, u^2$.
- a. For the group of order 64, $\mathcal{I} := \langle z^2, zy, y^3 + yw, \rangle$ $zx + yw, \ xw + yw, \ y^2x + yu, \ w^2 + yu, \ zu, \ zt,$ $yx^2 + xu + wu + wt$, $y^2t + wu$, $x^3 + yxt + y^2s + t^2$, $x^2w + yxu + yxt + ut, u^2$.
- a. For the group of order 32, $\mathcal{I} := \langle z^2, zy, y^3 + yw, \rangle$ $zx + yw, zw + yw, y^2x + yu, w^2 + yu, zu, zt,$ $yx^2 + xu + wu + wt, y^2t + wu, x^3 + yxt + y^2s + t^2,$ $x^2w + yxu + yxt + ut, u^2$.

The images of the generators of the cohomology of 128 inflated to 256 are $z, y, x, w, 0, u, t, s$

The images of the generators of the cohomology of 64 inflated to 128 are $z, y, x, w, 0, u, t, s$

The images of the generators of the cohomology of 32 inflated to 64 are $z, y, x, w, 0, u, t, s$

Let $P = k[z,y,x,w,v,u,t,s]$ where the variables are in degrees $1, 1, 2, 2, 2, 3, 3, 4$. The for a particular family the cohomology ring has the form $\mathrm{H}^*(G,k) \cong P/\mathcal{I}$ where

a. For the group of order 256,

$$
zy, \ y^{2}, \ z^{3} + yx, \ zx + yx, \ yw, \ z^{2}v + zt,
$$

\n
$$
x^{2}, \ yu, \ yt, \ z^{2}u + z^{2}t + xt, \ xu,
$$

\n
$$
z^{2}w^{2} + zvt + t^{2}, \ xw^{2} + zvu + zvt + ut + t^{2},
$$

\n
$$
zwu + zvu + zvt + z^{2}s + u^{2} + ut + t^{2}.
$$

b. For the group of order 128,

$$
zy, \quad y^2, \quad z^3 + yx, \quad zx + yx, \quad yw, \quad z^2w + zt,
$$

\n $x^2, \quad yu, \quad yt, \quad z^2u + xt, \quad xu,$
\n $xw^2 + zwu + zwt + ut, \quad z^2s + u^2 + ut, \quad t^2.$

The two cohomology rings are isomorphic – but we must make the change of variables

$$
t\mapsto t+zw+zw
$$

and

 $s \mapsto s + w^2$

The images of the generators of the cohomology of 126 inflated to 256 are

$$
z, y, x, 0, v, zw, 0, z2v + w2.
$$

E² **page of spectral sequence**

$$
a^{3} \qquad a^{3}z, a^{3}y \qquad \cdots
$$

\n
$$
a^{2} \qquad a^{2}z, a^{2}y \qquad \cdots
$$

\n
$$
a \qquad az, ay \qquad ax, aw, av \qquad \cdots
$$

\n
$$
1 \qquad z, y \qquad x, w, v \qquad u, t \qquad s
$$

As to the differentials, we have

So the distribution of the new generators (for the group of order 256) is

$$
u', t'
$$

$$
w'
$$

$$
1 \t z', y' \t x', v'
$$

 s'

 $(ay \mapsto w', a^2z \mapsto u', a^2y \mapsto t' \text{ and } a^4 \mapsto s'.)$

JOHN CARLSON (blackboard notes)

 R (2, x_i) dins $R(x_{i-1}, x_i)$ x_{i+1} quasi-regulars

 $\label{eq:2.1} \frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\frac{1}{\sqrt{2\pi}}\sum_{i=1}^n\$