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ABSTRACT
In this talk I will present three different situations where the hard work of CoCoA proved to be essential.
In a sort of crescendo they are shown in order of increasing difficulty.
e The first case is the huge computation which led to the proof that certain strange univariate poly-
nomials with sparse squares are minimal (rating: easy).

e The second topic relates to the computation underlying the full solution of a famous inverse problem
in Statistics (rating: moderately difficult).

e Finally, I will discuss some preliminary experimental results about generic initial ideals which are
still being investigated (rating: quite difficult, at least for me).



ADVERTISING

CoCoA 5 (New project. First official presentation at
COCOA VIII (Cadiz (Spain) 2 — 7 June 2003)

The new meaning of a “CoCoA Bug”.

Papers, books, software, and news are available at
http://cocoa.dima.unige.it
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1) Sparse Squares

For further details see
J. Abbott: Sparse Squares of Polynomials,
Mathematics of Computation (2000) p. 407413
and the book

M. Kreuzer, L. Robbiano: Computational Commutative Algebra 1,
Springer, 2000, p. 261-263 (Tutorial 42: Strange Polynomials)

Here you see an easy CoCoA session.

Use Q[x];

F:= x°12 + 2x~11 - 2x~10 + 4x"9 - 10x"8 + 50x77 - 128x"6 - b06x"5 +
506x~4 - 1012x~3 + 2530x~2 - 12650x - 31625;

Len(F); F~2; Len(F~2);
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x~24 + 4x°23 + 44x~19 - 1804x~17 - 9764x"13 - 176402x~12 + 144716x"11 -

3508604x~7 + 24482304x"6 + 14081980x"5 + 800112500x + 1000140625



Therefore the polynomial

Feg209.10 02104429 104845027 — 128 2% — 506 2°+
506 2% — 1012 2° + 2530 22 — 12650  — 31625

is such that

72 — 22404 2234 44 2191804 17— 9764 213176402 z12+144716 2!}

3508604 2 +24482304 5414081980 £°+800112500 £-+1000140625

is “shorter”

After several clever reductions of the problem, it was neces-
sary to compute (with CoCoA) about 150,000 Grobner bases, to
conclude that F' is the smallest among the polynomials with ra-
tional coefficients, such that the square has fewer power products
in 1ts support.



2) Border Bases and Design of Experiments.

For further details see

M. Caboara, L. Robbiano: Famalies of Estimable Terms, Proceedings of ISSAC 2001, (London,

Ontario, Canada, July 01, (New York, N.Y.), B. Mourrain, Ed. 56-63, 2001

L. Robbiano: Zero-Dimensional Ideals, or, The inestimable Value of Estimable Terms, Pro-

ceedings of the Academy Colloquium (2001), Constructive Algebra and Systems Theory. To appear

Design of Experiments (DoE) is a branch of Statistics.

Let us see one (very sketchy) example.



EXAMPLE (Chemical Plant)

A problem arises at the filtration stage in a chemical plant.
In similar plants the filtration cycle takes  ~ 40 man.

In this plant the filtration cycle takes — ~ 80 man.
WHY 7

SEVEN potential causes are considered:

water supply, raw material, level of temperature, rate of addi-
tion of caustic soda, ...

A total set of experiments (points) would be
27 =128

It is practically impossible to carry out all those experiments.

Too expensive and too time consuming.

Complete designs D are too big. We need SUBSETS.
They are called FRACTIONS



FcD

Question 1:  Are there “good” confounding equations for F'7?
Question 2: How do we compute them?
Question 3: How do we connect defining ideals with models?

Answer 1:  The defining ideal, a Grobner basis, an indicator func-
tion (separator).
Answer 2.  The Buchberger-Moller Algorithm.



Answer 3: |
et FCD andlet s=]|F| Then

dim(K|[x1,...,zn]/I(F)) = s

So, let {t1,...,ts} be power products such that their classes
form a K -basis of the quotient ring, and let

y=f(z) =) A\t
i—1

be a polynomial function on F'. By estimating the t;’s at F’,
we get an s X s “evaluation matrix”, which is INVERTIBLE.

This means that by evaluating y at the points of F' we can
IDENTIFY the MODEL

Question 4: How do we get monomial bases?
Answer 4: Use Grobner bases.

BUT



Grobner bases are not enough!
Let D be the 32 complete design. It has 9 points and canonical
basis {1, , y, =%, zy, ¥, =%y, zy°, =*y°}.
Example: Five Points.
Let D C F be the following fraction

D = {(070)7 (07—1)7 (170)7 (171)7 (_171)}

and consider the tuple O = (1, z, y, 2, y?).
It is immediate to Ch_e_ck that the determinant of the evaluation
matrix is —4, hence O is a basis of P/I(F),

BUT
F=a?4zy— _Lp ! I(F
= y—z—5y° — 5y € I(F)

and for every term ordering o, we see that
cither LT,(f) =2 or LTs(f) = y2.



A fundamental problem.

Now we concentrate on a very important problem.

Let D be a full factorial design, and let O C O(D)
be a complete set of estimable terms. What are the
fractions F of D such that O is a basis of P/I(D) as
a K-vector space?

We know already that Grobner bases are not enough!
A new tool is needed



The notion of a Border basis.

Definition 1 Let O be a non-empty set of power products such
that whenever ¢'|t for some t € O then t’ € O. Then O is called
a complete set of estimable terms.

Theorem Let O = (t1,...,t,) besuchthat O = {#1,...,t,}
is a complete set of estimable terms, and let by, ..., b, be power

products such that OF = (by,...,b,). Let G = (g1,...,90)
be a tuple of non-zero polynomials marked by O, such that

Supp(b; —g;) € O for ¢ = 1,...,v, and let I be the ideal
generated by G.

The following conditions are equivalent
a) Theset O = (%1, ...,t,) is a basis of P/I as a K-vector space.

b) The matrices My, ..., My, associated to (G, O") are pairwise
commuting.

In that case, G is called a border basis of I with respect to O.



Let D be the full 3% factorial design whose canonical polyno-
mials are f] = 25 — = and fy = v — . In this case O(D) =
{1,z,y, 22, zy, y2, 22y, 2y}, Let O = {1, z,y, 2%, y°} C O(D).
It is a complete set of estimable terms, and we get the equality
OF = {23,y zy, 2y, zy*}

PROBLEM: Find all the fractions F of D such that
O is a basis of the K-vector space P/I(F).

We introduce new independent indeterminates

CLH, . .. ,a,]_5, a/2]_, . .. ,a/25, a,317 « .. 7(1/35
and construct the polynomials
g1 =y + a1+ a1T + a3y + a14x’ + arsy’
g2 = &%y + ag1 + anT + agzy + aur’ + asy”
g3 = zy* + a3 + azT + azzy + asur’ + azsy”
in K[A][z,y]. We mark them by zy, 2%y and zy? respectively.
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The matrices associated to (G, OV) are

10—aq121—asz9
My=100—-aij30—ass
01 —a140 —asyy

(OO —a110 —agl\

(O —a11 0 —a9 O\
0—a190—a99 0
1 —a130 —agsl
0—a140—a9y 0

\O 0—ay50 ——a35)

\O —ai5 1 —ags O)

We force M, and My, to commute by imposing

MzMy — MyMazx =0, and get 20 equations in the a;;.

A computation carried out with CoCoA shows that Z(O) is zero-

dimensional, radical and its multiplicity is 81.

In conclusion, out of the 126 = (5) five-tuples of
points in D, there are 81 five-tuples which solve the

problem.

9



One of the solutions of Z(O) is the point p € Q1° whose coor-
dinates are

|
a1 =0ap2=—-lapz=—-5a1u=1a5=-

]
a1 =0 agp= 0 ag3=—5 a9 =0 ay =

D= DN DN

az; =0 azp = —1 a33=—% azs =1 ags =
By substituting those values in G C Q(A)|x,y] we have the
border basis G C Q|z, y].

The fraction Fp of D defined by G is
{(07 0)7 (07 _1)7 (17 0)7 (17 1)7 <_17 1)}

This is the Example of the Five Points introduced
before.

It is possible to show that out of the 81 five-tuples which solve
the problem, only 45 can be found using Grobner Bases.
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3) Generic Initial Ideals and Sections.

For further details see

A.M. Bigatti, A. Conca, L. Robbiano: Generic Initial Ideals and Distractions, In preparation

The keywords here are Generic Initial Ideals, Distractions, and
Hyperplane Sections.

Let me recall some facts.

Theorem ((Galligo-Bayer-Stillman)
Let K be an infinite field, let o be a term ordering on T",
and let I be a homogeneous ideal in P. For a generic element

g € GL(n, K), we have

a) The ideal ing(g(I)) is constant.
b) The ideal ing(g(I)) is Borel-fized.



Proposition (Borel and Strongly Stable Ideals)
Let K be a field, and let I be a monomial ideal in the polyno-

maal ring K[x1,...,zy|. Consider the following conditions.

a) The ideal I is Borel-fized
b) The ideal I is strongly stable

Then b) = a). Moreover, if char(K) = 0 they are equivalent.

Proposition (Strongly Stable Ideals and Gins)
Let K be a field, and let I be a strongly stable monomial 1deal
in the polynomial ring Klx1,...,xy]. Then

gin,(I) =1
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Theorem (Gins and Hyperplane Sections)
Let I be a homogeneous ideal in P, let h € P, be a generic

linear form, let 1 € {1,...,n}, and let o be a term ordering

of x;-DegRev type. Then we have the equality

ginai(lh) — (gina(l))xz-

of ideals in K[x1,...,%;—1,Tit1,---,Tn)-

QUESTION

For ideals of distractions and term orderings of x;-DegRev
type, is it true that

The reason we thought it was true was a combination of

intuition and some CoCoA experimental evidence.

18



BUT
The answer is NO. The turning point happened when CoCoA

finished the following session.

WARNING

CoCoA examples involving computations of generic initial ideals
have probability of being correct equal to 100% — e, where ¢ is
as small as you wish... but not equal to O.



M := Mat([[1,1,1,1],[0,0,0,-11,[1,0,0,01,[0,1,0,011);
Use Qlx,y,z,w], Ord(M);
I := Ideal(x"5, x74y, x"4z, x"3y~2, x"2y"3 );
Gl:= GinSect(Subst(HDistraction(I), w,
Randomized (DensePoly(1)-w)));
GinSect (Subst (HDistraction(I), w, 0)); G1=G2;

(P!
N
Il

G1;G2;



So what is true?

CoCoA gave a great many examples where the above equality
was true, if we used DegRevLex. Finally, we were able to prove

the following;:

Theorem Let I be a strongly stable monomsial ideal in the
polynomial ring P, and let L be a distraction matriz. Then

gin, (Dg(I)) =1

The hypotheses are very tight, since for instance the theorem
cannot be generalized to orderings of z,-DegRev type, nor can
it be generalized to stable ideals, ...



Use S::=2/(32003) [x[1..4]1];

G:=[x[3]"2x[4]"2, x[2]°3]; I:=Stable(G); Ginl:=Gin(MNDistraction(I));
GinI:=Gin(I); GinI=Ginl;

FALSE
Res(S/GinI); Res(S/Ginl);
0 --> S~4(-7) --> S$°18(-6) --> S$°3(-4)(+)8°24(-5) --> S$74(-3)(+)S"10(-4) -—> S

Ideal (x[1]°2x[3]1"2, x[11x[2]1x[3]"2, x[2]"2x[3]"2, x[1]1x[3]"3,
x[21x[3]1°3, x[3]1°4, x[11x[3]-2x[4], x[21x[3]"2x[4], x[3]1"3x[4],
x[3]1"2x[4]1"2, x[1]1°3, x[1]-2x[2], x[1]1x[2]"2, x[2]"3)

GinI;

Ideal(x[1]1°3, x[1]1-2x[2], x[11x[2]~2, x[2]°3, x[1]1"2x[3]"2,
x[1]1x[21x[3]1"2, x[2]1"2x[3]1"2, x[1]-2x[3]x[4], x[11x[3]1"3, x[2]x[3]"3,
x[11x[2]x[3]1x[4], x[3]1°4, x[11x[3]"2x[4], x[1]1"2x[4]"2)

Gini;

Ideal (x[1]1°3, x[1]"2x[2], x[11x[2]"2, x[2]"3, x[1]"2x[3]"2,
x[11x[21x[3]1"2, x[2]-2x[3]1-2, x[1]-2x[3]x[4], x[11x[3]"3, x[2]1x([3]"3,
x[11x[2]x[3]1x[4], x[3]1°4, x[2]"2x[3]1x[4], x[1]"2x[4]1"2)



Several corollaries follow, a lot of material is under investigation.
Let me show one.

Corollary Let I be a zero-dimensional strongly stable mono-
mial ideal in P, and let £ be a distraction matriz which s
radical for I, and whose entries are in K|x1,...,ZTn, Tpe1l.

Then Dp(I) is the ideal of a finite set of rational points
in P such that gin, (Dg(I) = 1.

This is not the end
or the beginning of the end,
but it is the end of the beginning.

(Sir Winston Churchill)





