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Let R be a commutative ring. Given polyno-
mials

fO(X)afl(X)77fn(X> S R[X]a

where X = (X1,...,Xy), are there g1,...,gn €
R[X] such that

fo=agifi+-+gnfn 7

This is the ideal membership problem for R[X].

Some aspects discussed in this talk:

e decidability;

e existence of bounds;

e dependence on parameters.



Theorem. (G. Hermann, J. Konig, A. Seiden-
berg)

Suppose that R = K is a field and deg f; < d
fori=20,...,n. If fo € (f1,...,fn), then

fo=g91f1+ -+ gnfn
for certain g1,...,gn € K[X] of degree at most

B(N,d) = (2d)2".

Remarks.

(1) The “computable” character of the bound
B implies the existence of a (naive) algo-
rithm to solve ideal membership for K[X]
if K is “computable”. (But there are “bet-
ter” algorithms: Grdbner bases, ...)

(2) The doubly exponential nature of (3 is es-
sentially unavoidable (Mayr-Meyer, 1982).
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(3) In many particular cases, better bounds
(single exponential) are known, e.g.:

— if fo = 1 (effective Hilbert Nullstellen-
satz: Brownawell, Kollar, ...),

—if I = (f1,...,fn) is zero-dimensional
or a complete intersection (Berenstein-
Yger), or if I is unmixed (Dickenstein-

Fitchas-Giusti-Sessa).

(4) Dependence on parameters: if

fo(C, X),..., fn(C,X) € Z|C, X]

are ‘‘general” polynomials, with parametric
variables C = (Cq,...,C)), then for each
field K the set

{CE KM . fo(e, X) €
(f1(e, X), .., fale, X)) K[X]}

is a constructible subset of KM,



Ideal membership in Z[X].

Algorithms for deciding ideal membership

fo€ (f1,---, f)Z[X]

in Z[X] have been known for a long time.
(Maybe Kronecker himself had found one al-
ready.)

For example, one can use the fact that the
rings

ZIX1/(f15---5 fn)

are residually finite: if

fO ¢ (f17°°'7fn)7

then this is witnessed by a homomorphism
h: Z|X] — R with

h(f1) =--- = h(fn) = 0,h(fo) # O,
where R is a finite ring (commutative, with 1).
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But the existence of bounds similar to the ones
in Hermann's theorem for polynomial rings
over fields was not known.

One difference to the case of fields: if a bound
d on the degree of fy,..., fn € Z[X] is given and
foe€ (f1,...,frn)Z[X], then there is no uniform
bound on the degrees of the 9g; 's, depending
only on N and d, such that

fo=g1f1+ -+ gnfn
(Here we choose max; deg g; minimally.)

Example. Let p,de Z, p> 1, d> 1. We have
1= (1+pX+--+p x4 (1 - px)+
Xd—lde’
with the degrees of
14+pX 4+ ---+p41x91  and x9-1

tending to infinity, as d — .



Theorem. (Gallo-Mishra, 1994)

Let fo,..., fn € Z[X]. If fo € (f1,..., fn), then

fo=g91fi+ -+ 9nfn

for certain polynomials g1, ...,gn € Z[X] whose
size |g;j| is bounded by

Wan+s(Ifol + -+ + [ fnl).

Here, the size |f| of a polynomial f=>,a, X"
(ay € Z) is a crude measure of its complexity:

fl = max{max|ay|, maxdegX.f}.
v 1 1

The function W, is the kth function in the
“Wainer hierarchy of primitive recursive func-
tions’. These functions are rapidly growing:

Wo(n) =n+ 1,
Wi(n) =2n + 1,
Wo(n) ~ 2",
.'Qn
Ws(n) ~ 22  (n times), ...



Theorem. Suppose fo, f1,...,fn € Z[X] are
polynomials with fo € (f1,...,fn), and

deg f;,109 ||f;l| < B for all j =0,...,n.
Then
fo=g1fi+ -+ 9gnfn

for certain polynomials g1,...,gn € Z[X] with

O(N?)
deg g;, 109 ||g;|| < (2B)

for 3 =1,...,n.

Here, for f =3, a, X" € Z[X], we put

I£1] == max lay].

Remark. In principle, one can determine the
constant hidden in the "O"-notation explicitly
from the proof. Again, we also get a (naive) al-
gorithm for deciding ideal membership in Z[X].
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Height of polynomials. For a non-zero poly-
nomial f =5, a, XY € Z[X], we define

mt(f) =

/01---/01 ogT| F(€2™ 01, . 2TONY 4oy - - df,
where

logT z = max {0, log z} for z e R, z > 0.
We put m1(0) := 0.

We also define

degx, f = degree of f in Xj,

N
deg(xyf = ) degy, f,
i=1

and
h(f) :=mT(f) + deg x f,

and we let h(0) := 0. We call h(f) > 0 the
height of f € Z[X].



Properties. For f,g, f1,..., fn € Z[X], n > 0:
(1) r(f) =h(=1),

(2) h(fg) < h(f) + h(g), and h(f") = nh(f),
(3) h(fi+--+ fu) < h(f1)+--+h(fn)+logn,

(4) Ci1deg(xy f < h(f) —log|f|] < Cadeg x) f,
for some (universal) constants C]_,CQ > 0.
(Hence, given C > 0 there are only finitely

many f € Z[X] with h(f) < C.)

(5) h extends to a height function on Q(X)3/9
which is Gal(Q(X)?9|Q(X))-invariant.

Notation. For an m x n-matrix A = (a;;) with
a;; € Z[X] put

h(A) = maxh(a;;).
0]



b1
Let A = (a;5) € <Z[X]>mxn, and let b = [ : ]

bm
be a column vector with entries b; in Z[X], and
consider the system of linear equations

Ay = b. (*)

Theorem. The system (x) has a solution y =
Y1

[ : ] € (Z[X])n if and only if it has such a
Yn

solution with

20(]\72)

degy; < (m(h(A,b) + 1))

forj =1,...,n. (The case m = 1 yields The-
orem 1.)

Y1 n . )
Note that y = [ : ] € (Z[X]) is a solution to
Yn
“Ay = b" if and only if

[A, —b] H = 0.

So deciding whether “Ay = b” has a solution
in Z[X] reduces to:
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(a) Constructing a collection of generators

z(l), e L) ¢ (Z[X])n_l_l

for the module of solutions (in Z[X]) to
‘A, —blz = 0", and

(b) deciding whether the ideal in Z[X] gener-
ated by the last components of the vectors
1) . 2(L) contains 1.

We will first concentrate on part (a):

Let A € (Z[X])mxn How does one construct

a finite set of generators for the submodule

Sz (A) ={y € (Z[X])” Ay =0}

of the free Z[X]-module (Z[X])n 7
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Restricted p-adic power series. (p prime.)

Lyp = completion of Z with respect to
the (p)-adic topology
= ring of p-adic integers.
We have Z,/pZy = Fp, with residue homomor-
phism a — a: Zp — Fyp.

Zp(X) = completion of Z[X] with respect to
the (p)-adic topology
= ring of p-adic restricted
power series.

We may regard Zp(X) as a subring of Z,[[X]]:
Its elements are the power series

f = Za,,X” € Zpl[X]]

such that ap, — O (in the (p)-adic topology on
Zp[[X]]) as degrv — co. Here

v=(v1,...,vy) € NV, XVZZX?---X]VVN.
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We have Zy(X)/pZy(X) = Fp[X], with residue
homomorphism

fef=2aX": Zp(X) — Fp[X].

A power series f € Zp(X) is called regular in
X of degree s ¢ N if f is unit-monic in Xy
of degree s.

Fact 1: Weierstrass Division.

Let f € Zp(X) be regular in X of degree s.
Then for each g € Zy,(X) there are uniquely
determined q € Z,(X) and r € Zp(X")[Xy] of
degree < s (in Xp) such that g =qf + .

Fact 2: Weierstrass Preparation.

For every f € Zp(X) regular in Xy of degree
s there exists a uniquely determined unit u &
Zp(X) and a monic polynomial g € Zp(X")[XN]
of degree s such that f = ug.

(I § € Zp(X")[Xn], then u € Zy(X)[X].)
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Fact 3: Flatness of Z,(X) over Z[X].
Let A e (Z[X])mxn. The Zy(X)-module

Sz,(x)(A)
of solutions to

Ay =20
in Zp(X) is generated by solutions in Z[X].

Fact 4: Let A € (Z,[X]

>m><n

. Suppose that

y (1 ) ¢ (Z(p)[X])n
generate the Q[X]-module S@[X](A), and
z(l), e L) ¢ (Z(p) [X])n
generate the Zp(X)-module Sz, xy(A), then
MCO NP CORN ORI

generate the Z,)[X]-module SZ(p) (x1(A4).

(Follows from faithful flatness of Z,(X) over its
subring S; 1Z,)[X], where Se = 1 + p°Z,[X],
e>1.)
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Lemma. Let A € (Z[X]

)’ITLXTL

. Suppose that

y D,y € Sp5(4)

generate S@[X](A) and SZp<X>(A) for all primes
p. Then they generate Sz x(A).

Proof. By Fact 4, the y(¥) generate SZ(p)[X](A)
for all primes p. Suppose y € SZ[X](A). In
particular y € SQ[X](A), hence there exists 0 #
0 € Z and g1,...,9x € Z[X] such that

oy = g1y + -+ gy

Let p1,...,p;, be the different prime factors of
0. So there exist §; € Z \ pjZ and g1;,--.,9K] €
Z[X] such that

oy = g1y + - + gryO.

Since gcd(4,61,...,07) = 1, we can write 1 as
Z-linear combination of ¢,d41,...,d7, and thus
y as Z[X]-linear combination of y(1) .. . (&)

L]
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We now show how to construct y(k>'s with the
properties in the lemma. (= a constructive
proof of Fact 3, uniform in p)

We proceed by induction on N. Consider the
special case of one homogeneous equation:

Jivyi+ -+ fayn =0, (<)

with f1,...,fn € Z[X]. We may assume that
Jj 7 0 for some j. After dividing each f; by
the gcd of the coefficients of f1,..., fn, we may
assume moreover that for each prime p some
Jj is non-zero mod p.

The equation (&) has the special solutions

[o,...,o,—fj,o,...,o,fi,o,...,o}
forl<i<j<<n (©0)
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If N = 0, the solutions (&) generate the Q-
vector space of solutions to (©) in Q", and the
Zp-module of solutions to (<) in Zp", for each
prime p.

Suppose N > 0. Let d = max;degy, f;. After
applying a suitable Zyj-automorphism of Zy(X)
we may assume that

e each f;, as element of Q[X], is unit-monic
(so Euclidean Division by f; is possible);

e for each prime p, some fj, regarded as ele-
ment of Z,(X), is regular in X (so Weier-
strass Division by fj is possible).

Write each unknown y; as

yi =yjo+yinXn+ -+ yja 1 Xn® !
with new unknowns y,; (1 <j <n, 0 <k <d).
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Comparing the coefficients of equal powers of
Xy, (©) gives rise to a homogeneous system

Aly' =0 (o)

of 2d equations in the nd unknowns y' = (y;1),
with coefficients in Z[X']. Applying the induc-
tion hypothesis to (<), we obtain solutions

y B,y e (z]x])"

to (©) with the following properties:

e every solution (y1,...,yn) € (Q[X])n to (<)
with each y; having Xpy-degree < d is a
Q[X]-linear combination of y(1) ... ().

e for all primes p, every solution (z1,...,2n) €
(Zp(X’)[XNDn to (¢) with each z; having
Xn-degree < d is a Zp(X)-linear combina-
tion of y(l), . ,y(K).
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Let now

y=(y1,..-,yn) € (QUX])"
z2=1(21,...,2n) € (Zp<X>)n (p prime)

be any solutions to (¢). To complete the in-
duction step, one shows:

e subtracting suitable Q[X]-multiples of the
special solutions (<&<¢) from y, one can
achieve degx, y; < d for all j (by Euclidean
Division in Q[X]);

e subtracting suitable Z,(X)-multiples of the
special solutions (<&<¢) from z, one can
achieve degy, z; < d for all j (by Weier-
strass Division and Preparation for Z,(X)).
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Theorem. Given an mxn-matrix A with entries
a;; € Z[X], one can construct generators

n
y(l), . ,y(K) € (Z[X])
of the Z[X]-module of solutions (in Z[X]) to
Ay=20
with

h(y(l), . ,y(K)) < (m(h(A) + 1))

>O(N?)

Remark. The proof shows that the degree of
the y(k) can be bounded from above by

(md 4+ 1)2((NV+1)Y-1)

Note: This bound depends only on N, m, n,
and d = max; ;deda;;, not on |la;||. (K can
be similarly bounded.)
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Digression:

A ring R is called

e hereditary if every ideal of R is projective.
(E.g., DVRs, Dedekind domains.)

e semihereditary if every finitely generated
ideal of R is projective. (E.g., valuation rings,
Priifer domains.)

Theorem. Given N,d € N there is an integer
8 = B(N,d) with the following property: If R is
semihereditary and fq,...,fn € R[Xq,...,XN]
of degree < d, then every solution to

Jiyi+ -+ fayn =0
is a linear combination of solutions of deg. < (3.

Proof: uses some ideas inspired by model the-
ory and a theorem of Vasconcelos (semihered-
itary rings are stably coherent).

Remark. For R hereditary we can take the
same doubly exponential 8 as for R=7. (The
proof for R = 7Z can be adapted.)
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Subproblem (b): ‘“Bezout identities”

Let f1,...,fn € Z[X]. Are there g1,...,9n €
Z|X] such that

l=gifi+ -+ gnfn?

T his problem can be reduced to similar prob-
lems over coefficient rings Q and Fy,, where
Hermann's Theorem may be used to compute
bounds on the height and degree of the g; as
desired.

More efficiently, on can obtain such bounds
using

e an “arithmetic” form of the Nullstellensatz
over Q (Krick-Pardo, ...);

e an effective form of the Nullstellensatz over
F, (Kollar).
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Dependence on parameters. Consider “ge-
neral’ polynomials

fO(CaX>7f1(CaX)7° . 7fn(C7X) S Z[CaX]a

with C = (Cq,...,C)s) being parametric vari-
ables. How does ideal membership

fole, X) € (f1(e, X), -+, fule, X))

depend on c € RM, with R a ring of an “arith-
metic’ nature?

The case of DVRs. Let R be a DVR. Let
“I'" denote divisibility in R:
alb <= beaR for a,b € R.

A divisibility condition ®(C') is a formal expres-
sion of the form

“p1(C)]q1(C) and pa(C)[g2(C)
. and pr(C)ler(C) ",

with p;, q; € Z[C].
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Theorem. There are finitely many divisibil-
ity conditions ®1(C,T),..., P (C,T) such that
for all DVRs R with maximal ideal tR, we have:
If c € RM, then

fole, X) € (f1(e, X),..., fule, X)) R[X] <=
for some k, ®.(c,t) holds in R.

The case of Bezout domains. Let R be a
Bezout domain. If a,b € R, let gcd(a,b) denote
a generator of the ideal

(a,b) = {)\a—l—,ub DW= R},
and let (a:b) € R denote a generator of

(a) : (b) = {ceR:bce (a)},

chosen so that a = gcd(a,b) - (a : b) for all
a,b € R. A gcd-term in the indeterminates C
IS any expression built up from

0,1,Cq1,...,Cy,+,—, - ,9cd and ( : ).
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As usual, for an ideal I in a ring S,

\f:{aeS:a”eIforsomen>O}.

A radical condition is a formal expression W (V)
of the form

(V) € (V) & .. &pr(V) € |/ (6 (V)"
for p;,q; € Z[V], V = (Vl, .. .,VL).

T heorem. T here exists a finite collection

\U]_(V), SRR WK(V>7

consisting of radical conditions and negations
thereof, and an L-tuple v(C) of gcd-terms,
such that for all Bezout domains R and co-
efficient tuples ¢ € RM :

fole, X) € (f1(e, X), ..., fa(e, X)) RIX] <=
for some k, \Uk<7'(c)) holds in R.
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Some questions:

Let f1,..., fn € Z[X], where X = (X1,..., XnN),
and k= h(f1,.... fn).

e Modular criteria for ideal membership:
There exist non-zero §,E € Z such that for
every fo € Z[X]:

fo€ (f1, ., fn) <=
5fo € (f1,---, fn) & fo € (f1,---, fn,6%).

Can you bound ¢, E in terms of h?

e Bounds and algorithms for other problems:
If R = Z[X]/(f1,...,fn) is reduced, then its
group of units U is finitely generated (Samuel,
Roquette). Can you bound the heights of gen-
erators of U7

o Complexity of Grobner basis calculations:
Let G = {g1,..-,9m} be a Grdbner basis for
the ideal (f1,...,fn) of Z[X]. Can you bound

h(g1,...,g9m) in terms of A(fq,..., fn)?
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