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DEFINITIONS AND NOTATION

K denotes a field with char(K) = 0 and K is

an algebraic closure of K.

If f1, . . . , fs ∈ K[x1, . . . , xn], V (f1, . . . , fs) is the

affine variety

{x ∈ An(K) : f1(x) = 0, . . . , fs(x) = 0}.

Equidimensional decomposition

Any algebraic variety V ⊂ An (or Pn) can be

uniquely decomposed in a minimal way as

V =
n⋃

r=0

Vr,

where, for every 0 ≤ r ≤ n, Vr = ∅ or Vr is

r-equidimensional.

V0, . . . , Vn are the equidimensional components

of V .



THE PROBLEM

Given f1, . . . , fs ∈ K[x1, . . . , xn] defin-

ing a variety

V := V (f1, . . . , fs) ⊂ An,

obtain algorithmically the equidimen-

sional decomposition

V =
n⋃

r=0

Vr,

that is, provide a characterization for

each of the equidimensional compo-

nents V0, . . . , Vn of V .



ALGORITHMS

Assume K is an effective field.

• Input data: Polynomials defining the va-

riety V

• Instructions: Arithmetic operations and

comparisons (= or 6=)

• Output: A description of each equidi-

mensional component of V

Complexity: Number of instructions.



DESCRIBING EQUIDIMENSIONAL

VARIETIES

An equidimensional variety V ⊂ An can be

described in different ways:

• Polynomial defining equations:

V = V (f1, . . . , fs)

• Geometric resolution:

A generic “parametric” description of V .

• Chow form:

A single multivariate polynomial contain-

ing all the relevant information about V .

The precise definitions will be given later.



FIRST ALGORITHMS FOR
EQUIDIMENSIONAL
DECOMPOSITION

V = V (f1, . . . , fs) ⊂ An (or Pn), deg fi ≤ d.

• A. Chistov - D.Y. Grigor’ev (1983)

• M. Giusti - J. Heintz (1991)
(well parallelizable)

Complexities: (sdn2
)O(1).

Remarks

• Both algorithms compute the equidimen-
sional components Vr recursively, from
r = n, . . . ,0.

• They yield polynomial defining equations
for the equidimensional components.

• Each polynomial is represented by the vec-
tor of its coefficients.



FURTHER PROBLEM

Construction of an algorithm with com-

plexity polynomial in sdn (input size).

Some ideas to solve this problem par-

tially:

• Changing the data structure used

to encode polynomials

• Probabilistic algorithms



ENCODING POLYNOMIALS

Let f ∈ K[x1, . . . , xn]

• Dense form:

Vector of the coefficients of f in a pre-

fixed order of monomials.

Size: number of coefficients of f .

• Straight-line program (slp):

Program whose instructions are +,−, · ,

which enables to evaluate f at any given

point a ∈ Kn.

Size (length of the slp):
L = number of instructions

• Mixed representation:

In dense form with respect to certain vari-

ables and the coefficients by slp’s.



PROBABILISTIC ALGORITHMS

The algorithm works under certain genericity
conditions depending on parameters whose
values are chosen randomly.

Additional operation allowed: random choice
of a parameter from a prefixed finite set.

For each random choice, there is a non-zero
polynomial whose non-vanishing leads to a
correct computation.

The error probability of the algorithm can be
estimated by means of the following result
(Schwartz, 1980):

Let f ∈ K[x1, . . . , xn] be a non-zero
polynomial. Then, if Γ ⊂ K is a finite
set, we have for a randomly chosen
a ∈ Γn:

Prob(f(a) = 0) ≤ deg(f)

#Γ
.



COMPUTING EQUATIONS IN

POLYNOMIAL TIME

Theorem (G. J.- J. Sabia, 2000)

Let f1, . . . , fs ∈ K[x1, . . . , xn] with

deg fi ≤ d for 1 ≤ i ≤ s, and let

V = V (f1, . . . , fs) =
n⋃

r=0

Vr ⊂ An.

Then, there is a probabilistic algorithm

which computes the equidimensional

decomposition of V within complexity

(sdn)O(1).

For every 0 ≤ r ≤ dimV , the algorithm

yields a set of n + 1 polynomials of de-

grees bounded by deg(Vr) defining Vr.

Remark Output and intermediate re-

sults are encoded by slp’s.



GEOMETRIC RESOLUTIONS

Let V ⊂ An be an equidimensional variety

with dimV = r and degV = D.

Assume that #
(
V ∩ V (x1, . . . , xr)

)
= D. Set

K := K(x1, . . . , xr) , A := K ⊗K[x1,...,xr]
K[V ].

A geometric resolution of V is defined by:

• a linear form ` which is a primitive ele-

ment of K ↪→ A.

• the minimal polynomial p ∈ K[x1, . . . , xr][t]

of ` in A (monic in t).

• a polynomial ρ ∈ K[x1, . . . , xr] − {0} and

polynomials vr+1, . . . , vn ∈ K[x1, . . . , xr][t]

with deg vi ≤ D − 1 such that

ρ xi = vi(`) in A for i = r + 1, . . . , n.



OTHER PROBABILISTIC

ALGORITHMS

(1) M. Elkadi - B. Mourrain (1999).

Complexity: sdO(n2) (dense encoding).

(2) G. Lecerf (2000).

Complexity: (sdnL)O(1) (slp’s).

Remarks

• In (1), a non-minimal decomposition of

V is obtained, and no probability consid-

erations are made.

• Both algorithms compute geometric res-

olutions describing the equidimensional

components.

• In (2), the input is encoded by a slp of

length L.



CHOW FORM OF AN

EQUIDIMENSIONAL VARIETY

Let V ⊂ Pn be an equidimensional projective

variety definable over K with dimV = r.

For i = 0, . . . r, let

Ui := (Ui0, Ui1, . . . , Uin)

Li(Ui, x) := Ui0x0 + Ui1x1 + · · ·+ Uinxn.

The Chow form of V is the unique —up to

scalar factors— squarefree polynomial FV ∈
K[U0, . . . , Ur] verifying

V ∩ {L0(u0, x) = 0, . . . , Lr(ur, x) = 0} 6= ∅
m

FV (u0, . . . , ur) = 0

The Chow form of an equidimensional affine

variety is the Chow form of its projective clo-

sure.



Remarks

• degUi
FV = degV ∀0 ≤ i ≤ r

• V =
t⋃

i=1
Ci (irr. dec.) ⇒ FV =

t∏
i=1

FCi

Examples

• V = Pn, FV (U0, . . . , Un) = det(Uij)0≤i≤n
0≤j≤n

• V = {p1, . . . , pD} ⊂ Pn,

FV (U0) =
∏

1≤j≤D

L0(U0, pj).

Remark

An equidimensional projective variety V ⊂ Pn

is uniquely determined by its Chow form:

ξ ∈ V
m

Li(ui, ξ) = 0 ∀0 ≤ i ≤ r ⇒ FV (u0, . . . , ur) = 0

If V is a projective or affine variety, it is pos-
sible to derive equations for V from FV .



COMPUTING CHOW FORMS

V = V (f1, . . . , fs) ⊂ Pn, deg fi ≤ d:

• T. Krick (1990), L. Caniglia (1990).

V equidimensional.

Complexity: (sd)nO(1)
.

• M. Giusti - J. Heintz (1991).

V =
n⋃

r=0
Vr equid. decomposition.

Computation of FV0
, . . . ,FVn within com-

plexity (sd)nO(1)
.

Dense encoding ⇒ Complexity ≥ dn2



Using straight-line programs

• S. Puddu - J. Sabia (1998)

V irreducible.

Complexity: (sdnr)O(1), if r = dimV .

• G. J. - S. Puddu - J. Sabia (2001)

Computation of FVr, where r = dimV .

Complexity: (sdn)O(1).

Remarks

• All these algorithms are deterministic.

• Effective quantifier elimination applied to:

∃x ∈ Pn : f1(x) = 0 ∧ · · · ∧ fs(x) = 0 ∧
L0(u0, x) = 0 ∧ · · · ∧ Lr(ur, x) = 0



BETTER COMPLEXITY

BOUNDS

Theorem (G. J.-T. Krick-J. Sabia-M.

Sombra, 2002)

Let f1, . . . , fs ∈ K[x1, . . . , xn] be polyno-

mials with deg(fi) ≤ d (1 ≤ i ≤ s) en-

coded by slp’s of length L, and let

V = V (f1, . . . , fs) =
n⋃

r=0

Vr ⊂ An.

There is a probabilistic algorithm which

computes slp’s of length s(ndn)O(1)L

encoding the Chow forms FV0
, . . . ,FVn

within complexity s(ndn)O(1)L.



Auxiliary result (algorithm ChowForm)

V ⊂ An equidimensional, dimV = r.

Assume that Z := V ∩ V (x1, . . . , xr) is a 0-

dimensional variety with degV points.

There is a deterministic algorithm which com-

putes a slp encoding FV from

• a geometric resolution of Z and

• a system of local equations f1, . . . , fn−r ∈
K[x1, . . . , xn] of V at Z.

Complexity and length of the output slp:

(n ddegV )O(1)L

if deg fi ≤ d (1 ≤ i ≤ n − r) and f1, . . . , fn−r

are encoded by slp’s of length L.



Sketch of the main algorithm (EquiDec)

1. Input preparation (random).

• n + 1 linear combinations of f1, . . . , fs

• linear change of variables

New polynomials: f1, . . . , fn+1.

For r = 0, . . . , n:

V (f1, . . . , fn−r) = Wr ∪ Vr ∪ · · · ∪ Vn

Wr+1 ∩ V (fn−r) = Wr ∪ Vr ∪ V ′
r with V ′

r ⊂ V

2. Computing Chow forms of a non-minimal
decomposition
For r = n− 1, . . . ,0 compute:

• FWr+1
:= ChowForm(GRr+1, f1, . . . , fn−r)

• FWr+1∩V (fn−r) := Inter(FWr+1
, fn−r)

• FVr∪V ′
r
:= Sep1(Wr+1 ∩ V (fn−r), fn−r+1)

• GRr := geometric resolution of Wr∩V (x1, . . . , xr).

3. Cleaning spurious components
For r = n− 2, . . . ,0 compute:

• Gr ∈ K[x1, . . . , xn] verifying

V ′
r ⊂ V (Gr) and dim(Vr ∩ V (Gr)) < r.

• FVr
:= Sep2(FVr∪V ′

r
, Gr)



CHOW FORMS VS. GEOMETRIC
RESOLUTIONS

Let V ⊂ An be an r-equidimensional variety
and let Z := V ∩ V (x1, . . . , xr).

Assume that dimZ = 0, degZ = degV and
` is a linear form separating the points in Z.

Chow form → Geometric resolution:

Let e0 := (1,0, . . . ,0), c0:= coefficients of `

and

P := FV (U0 − T0e0, . . . , Ur − Tre0)

In A := K(x1, . . . , xr)⊗K[x1,...,xr]
K[V ], we have:

• p(t) := P (c0, e1, . . . , er)(t, x1, . . . , xr) is the
minimal polynomial of `

• for i = 1, . . . , n, the polynomial

wi := ∂P/∂U0i(c0, e1, . . . , er)(t, x1, . . . , xr)

verifies p′(`)xi = wi(`)

This enables to derive a geometric resolution
of V within complexity polynomial in n, degV

and the length of a slp encoding FV .



Geometric resolution → Chow form:

• Obtain a geometric resolution of Z by

specialization of the geometric resolution

of V .

• Compute a system of local equations of V

at Z (eliminating polynomials of generic

linear forms)

• Apply algorithm ChowForm

This procedure computes FV within com-

plexity polynomial in n, degV and the length

of a slp encoding the geometric resolution of

V .

Corollary From the complexity viewpoint,

Chow forms and geometric resolutions are

equivalent representations of an equidimen-

sional variety.



GEOMETRIC DEGREE OF A

POLYNOMIAL SYSTEM

How can we identify particular instances of

the problem which can be solved faster than

the general case?

Giusti et al. (1998) introduced a parameter δ

associated with the system in the complexity

estimates of 0-dimensional system solving.

Let f1, . . . , fs ∈ K[x1, . . . , xn].

Consider new variables (Tij)1≤i≤n,1≤j≤s and

polynomials

f̂i :=
s∑

j=1

Tij fj i = 1, . . . , n

The geometric degree of the system f1, . . . , fs

can be defined as

δ := max{degV (f̂1, . . . , f̂`) : 1 ≤ ` ≤ n}

Remark If deg(fi) ≤ d, by Bézout inequality

δ ≤ dn, but it can be considerably smaller.



EXPECTED COMPLEXITY

EquiDec is a bounded probability algorithm

(error probability < 1
4 on any input).

Its complexity on a given input γ can be seen

as a random variable C(γ) with finite sample

set.

Expected complexity of the algorithm :=

expectation of the random variable C.

If V = V (f1, . . . , fs) ⊂ An, where f1, . . . , fs ∈
K[x1, . . . , xn] satisfy:

• deg fi ≤ d for 1 ≤ i ≤ s,

• they are encoded by slp’s of length L,

• δ is the geometric degree of the system,

EquiDec computes FV0
, . . . ,FVn within expected

complexity

s(ndδ)O(1)L.



AN APPLICATION: COMPUTATION

OF SPARSE RESULTANTS

Let A ⊂ (N0)
n be a finite set containing

{0, e1, . . . , en}.
Vol(A) := normalized volume of the convex

hull of A in Rn.

Theorem (G. J.-T. Krick-J. Sabia-M.

Sombra, 2002)

There is a probabilistic algorithm which

computes a scalar multiple of the A-

resultant within (expected) complexity

(nVol(A))O(1).

This follows from the fact that the A-resultant

ResA is the Chow form of the toric variety

associated with A.


