Solving polynomial equations by decomposition of algebraic varieties

Gabriela Jeronimo

Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

DEFINITIONS AND NOTATION

K denotes a field with char(K) = 0 and \overline{K} is an algebraic closure of K .

If $f_1, \ldots, f_s \in \mathbb{K}[x_1, \ldots, x_n]$, $V(f_1, \ldots, f_s)$ is the affine variety

$$
\{x\in \mathbb{A}^n(\overline{\mathbb{K}}): f_1(x)=0,\ldots,f_s(x)=0\}.
$$

Equidimensional decomposition

Any algebraic variety $V \subset \mathbb{A}^n$ (or \mathbb{P}^n) can be uniquely decomposed in a minimal way as

$$
V = \bigcup_{r=0}^{n} V_r,
$$

where, for every $0 \le r \le n$, $V_r = \emptyset$ or V_r is r-equidimensional.

 V_0, \ldots, V_n are the equidimensional components $of V$.

THE PROBLEM

Given $f_1, \ldots, f_s \in \mathbb{K}[x_1, \ldots, x_n]$ defining a variety

$$
V := V(f_1, \ldots, f_s) \subset \mathbb{A}^n,
$$

obtain algorithmically the equidimensional decomposition

$$
V = \bigcup_{r=0}^{n} V_r,
$$

that is, provide a characterization for each of the equidimensional components V_0, \ldots, V_n of V .

ALGORITHMS

Assume K is an effective field.

- Input data: Polynomials defining the variety V
- Instructions: Arithmetic operations and comparisons (= or \neq)
- Output: A description of each equidimensional component of V

Complexity: Number of instructions.

DESCRIBING EQUIDIMENSIONAL VARIETIES

An equidimensional variety $V \subset \mathbb{A}^n$ can be described in different ways:

- Polynomial defining equations: $V = V(f_1, ..., f_s)$
- Geometric resolution: A generic "parametric" description of V .
- Chow form:

A single multivariate polynomial containing all the relevant information about V .

The precise definitions will be given later.

FIRST ALGORITHMS FOR EQUIDIMENSIONAL DECOMPOSITION

 $V = V(f_1, \ldots, f_s) \subset \mathbb{A}^n$ (or \mathbb{P}^n), deg $f_i \leq d$.

- A. Chistov D.Y. Grigor'ev (1983)
- M. Giusti J. Heintz (1991) (well parallelizable)

Complexities: $(s d^{n^2})^{O(1)}$.

Remarks

- Both algorithms compute the equidimensional components V_r recursively, from $r = n, \ldots, 0$.
- They yield polynomial defining equations for the equidimensional components.
- Each polynomial is represented by the vector of its coefficients.

FURTHER PROBLEM

Construction of an algorithm with complexity polynomial in sd^n (input size).

Some ideas to solve this problem partially:

- Changing the data structure used to encode polynomials
- Probabilistic algorithms

ENCODING POLYNOMIALS

Let $f \in \mathbb{K}[x_1,\ldots,x_n]$

• Dense form:

Vector of the coefficients of f in a prefixed order of monomials.

Size: number of coefficients of f .

• Straight-line program (slp):

Program whose instructions are $+, -, \cdot$, which enables to evaluate f at any given point $a \in \mathbb{K}^n$.

Size (length of the slp): $L =$ number of instructions

• Mixed representation:

In dense form with respect to certain variables and the coefficients by slp's.

PROBABILISTIC ALGORITHMS

The algorithm works under certain genericity conditions depending on parameters whose values are chosen randomly.

Additional operation allowed: random choice of a parameter from a prefixed finite set.

For each random choice, there is a non-zero polynomial whose non-vanishing leads to a correct computation.

The error probability of the algorithm can be estimated by means of the following result (Schwartz, 1980):

Let $f \in \mathbb{K}[x_1,\ldots,x_n]$ be a non-zero polynomial. Then, if $\Gamma \subset \mathbb{K}$ is a finite set, we have for a randomly chosen $a \in \Gamma^n$:

$$
\mathsf{Prob}(f(a) = 0) \leq \frac{\deg(f)}{\#\Gamma}.
$$

COMPUTING EQUATIONS IN POLYNOMIAL TIME

Theorem (G. J.- J. Sabia, 2000)

Let $f_1, \ldots, f_s \in \mathbb{K}[x_1, \ldots, x_n]$ with deg $f_i \leq d$ for $1 \leq i \leq s$, and let

$$
V = V(f_1, \ldots, f_s) = \bigcup_{r=0}^n V_r \subset \mathbb{A}^n.
$$

Then, there is a probabilistic algorithm which computes the equidimensional decomposition of V within complexity $(s d^n)^{O(1)}$.

For every $0 \le r \le \dim V$, the algorithm yields a set of $n + 1$ polynomials of degrees bounded by deg(V_r) defining V_r .

Remark Output and intermediate results are encoded by slp's.

GEOMETRIC RESOLUTIONS

Let $V \subset \mathbb{A}^n$ be an equidimensional variety with dim $V = r$ and deg $V = D$.

Assume that $\# \big(V \cap V(x_1, \ldots, x_r) \big)$ ´ $= D.$ Set $K:=\mathbb{K}(x_1,\ldots,x_r)\,\,,\quad A:=K\otimes_{\mathbb{K}[x_1,\ldots,x_r]}\mathbb{K}[V].$

A geometric resolution of V is defined by:

- a linear form ℓ which is a primitive element of $K \hookrightarrow A$.
- the minimal polynomial $p \in \mathbb{K}[x_1,\ldots,x_r][t]$ of ℓ in A (monic in t).
- a polynomial $\rho \in \mathbb{K}[x_1,\ldots,x_r] \{0\}$ and polynomials $v_{r+1}, \ldots, v_n \in \mathbb{K}[x_1, \ldots, x_r][t]$ with deg $v_i \leq D-1$ such that

 $\rho x_i = v_i(\ell)$ in A for $i = r + 1, \ldots, n$.

OTHER PROBABILISTIC ALGORITHMS

- (1) M. Elkadi B. Mourrain (1999). Complexity: $sd^{O(n^2)}$ (dense encoding).
- (2) G. Lecerf (2000). Complexity: $(s d^n L)^{O(1)}$ (slp's).

Remarks

- In (1), a *non-minimal* decomposition of V is obtained, and no probability considerations are made.
- Both algorithms compute *geometric res*olutions describing the equidimensional components.
- In (2), the input is encoded by a slp of length L.

CHOW FORM OF AN EQUIDIMENSIONAL VARIETY

Let $V \subset \mathbb{P}^n$ be an equidimensional projective variety definable over $\mathbb K$ with dim $V = r$. For $i = 0, \ldots r$, let

 $U_i := (U_{i0}, U_{i1}, \ldots, U_{in})$ $L_i(U_i, x) := U_{i0}x_0 + U_{i1}x_1 + \cdots + U_{in}x_n.$

The Chow form of V is the unique —up to scalar factors— squarefree polynomial $\mathcal{F}_V \in$ $\mathbb{K}[U_0,\ldots,U_r]$ verifying

$$
V \cap \{L_0(u_0, x) = 0, \dots, L_r(u_r, x) = 0\} \neq \emptyset
$$

$$
\updownarrow
$$

$$
\mathcal{F}_V(u_0, \dots, u_r) = 0
$$

The Chow form of an equidimensional *affine* variety is the Chow form of its projective closure.

Remarks

 $\bullet\;\mathsf{deg}_{U_{i}}\mathcal{F}_{V}=\mathsf{deg}\,V\;\;\forall\,\mathsf{0}\leq i\leq r$

•
$$
V = \bigcup_{i=1}^{t} C_i
$$
 (irr. dec.) $\Rightarrow \mathcal{F}_V = \prod_{i=1}^{t} \mathcal{F}_{C_i}$

Examples

•
$$
V = \mathbb{P}^n
$$
, $\mathcal{F}_V(U_0, \dots, U_n) = \det(U_{ij})_{\substack{0 \le i \le n \\ 0 \le j \le n}}$

•
$$
V = \{p_1, ..., p_D\} \subset \mathbb{P}^n
$$
,
\n
$$
\mathcal{F}_V(U_0) = \prod_{1 \le j \le D} L_0(U_0, p_j).
$$

Remark

An equidimensional projective variety $V \subset \mathbb{P}^n$ is uniquely determined by its Chow form:

$$
\xi \in V
$$

$$
\updownarrow
$$

$$
L_i(u_i, \xi) = 0 \,\,\forall \,0 \leq i \leq r \Rightarrow \mathcal{F}_V(u_0, \dots, u_r) = 0
$$

If V is a projective or affine variety, it is possible to derive equations for V from \mathcal{F}_V .

COMPUTING CHOW FORMS

 $V = V(f_1, \ldots, f_s) \subset \mathbb{P}^n$, deg $f_i \leq d$:

- T. Krick (1990), L. Caniglia (1990). V equidimensional. Complexity: $(sd)^{n^{O(1)}}$.
- M. Giusti J. Heintz (1991).

$$
V = \bigcup_{r=0}^{n} V_r
$$
 equal. decomposition.

Computation of $\mathcal{F}_{V_0}, \ldots, \mathcal{F}_{V_n}$ within complexity $(sl)^{n^{O(1)}}.$

Dense encoding \Rightarrow Complexity $\geq d^{n^2}$

Using straight-line programs

- S. Puddu J. Sabia (1998) V irreducible. Complexity: $(s d^{nr})^{O(1)}$, if $r = \dim V$.
- G. J. S. Puddu J. Sabia (2001) Computation of \mathcal{F}_{V_r} , where $r = \dim V$. Complexity: $(s d^n)^{O(1)}$.

Remarks

- All these algorithms are deterministic.
- Effective quantifier elimination applied to:

$$
\exists x \in \mathbb{P}^n : f_1(x) = 0 \land \dots \land f_s(x) = 0 \land \nL_0(u_0, x) = 0 \land \dots \land L_r(u_r, x) = 0
$$

BETTER COMPLEXITY BOUNDS

Theorem (G. J.-T. Krick-J. Sabia-M. Sombra, 2002)

Let $f_1, \ldots, f_s \in \mathbb{K}[x_1, \ldots, x_n]$ be polynomials with deg(f_i) $\leq d$ (1 $\leq i \leq s$) encoded by slp's of length L , and let

$$
V = V(f_1, \ldots, f_s) = \bigcup_{r=0}^n V_r \subset \mathbb{A}^n.
$$

There is a probabilistic algorithm which computes slp's of length $\,s(nd^n)^{O(1)}L$ encoding the Chow forms $\mathcal{F}_{V_0}, \ldots, \mathcal{F}_{V_n}$ within complexity $\mathit{s}(nd^n)^{O(1)}L.$

Auxiliary result (algorithm ChowForm)

 $V \subset \mathbb{A}^n$ equidimensional, dim $V = r$. Assume that $Z := V \cap V(x_1, \ldots, x_r)$ is a 0dimensional variety with deg V points.

There is a deterministic algorithm which computes a slp encoding \mathcal{F}_V from

- a geometric resolution of Z and
- a system of local equations $f_1, \ldots, f_{n-r} \in$ $\mathbb{K}[x_1,\ldots,x_n]$ of V at Z.

Complexity and length of the output slp:

 $(n d$ deg $V)^{O(1)} L$

if deg $f_i \leq d$ (1 $\leq i \leq n-r$) and f_1, \ldots, f_{n-r} are encoded by slp's of length L.

Sketch of the main algorithm (EquiDec)

- 1. Input preparation (random).
	- $n+1$ linear combinations of f_1, \ldots, f_s
	- linear change of variables

New polynomials: f_1, \ldots, f_{n+1} . For $r = 0, \ldots, n$: $V(f_1,\ldots,f_{n-r}) = W_r \cup V_r \cup \cdots \cup V_n$ $W_{r+1} \cap V(f_{n-r}) = W_r \cup V_r \cup V'_r$ with $V'_r \subset V$

2. Computing Chow forms of a non-minimal decomposition

For $r = n - 1, \ldots, 0$ compute:

- $\mathcal{F}_{W_{r+1}} := \text{ChowForm}(GR_{r+1}, f_1, \ldots, f_{n-r})$
- $\bullet~~\mathcal{F}_{W_{r+1}\cap V(f_{n-r})}:=\text{Inter}(\mathcal{F}_{W_{r+1}},f_{n-r})$
- $\bullet \ \mathcal{F}_{V_r \cup V_r'} := \mathrm{Sep}_1(W_{r+1} \cap V(f_{n-r}), f_{n-r+1})$
- $GR_r :=$ geometric resolution of $W_r \cap V(x_1, \ldots, x_r)$.
- 3. Cleaning spurious components For $r = n - 2, \ldots, 0$ compute:
	- $G_r \in \mathbb{K}[x_1,\ldots,x_n]$ verifying $V'_r \subset V(G_r)$ and dim $(V_r \cap V(G_r)) < r$.
	- $\bullet\;\; \mathcal{F}_{V_r}:=\mathrm{Sep}_2(\mathcal{F}_{V_r\cup V_r'},G_r)$

CHOW FORMS VS. GEOMETRIC RESOLUTIONS

Let $V \subset \mathbb{A}^n$ be an r-equidimensional variety and let $Z := V \cap V(x_1, \ldots, x_r)$.

Assume that dim $Z = 0$, deg $Z = \text{deg } V$ and ℓ is a linear form separating the points in Z.

Chow form \rightarrow Geometric resolution:

Let $e_0 := (1, 0, \ldots, 0)$, $c_0 :=$ coefficients of ℓ and

$$
P := \mathcal{F}_V(U_0 - T_0e_0, \ldots, U_r - T_re_0)
$$

In $A:=\mathbb{K}(x_1,\ldots,x_r)\!\otimes_{\mathbb{K}[x_1,\ldots,x_r]}\!\mathbb{K}[V]$, we have:

- $p(t) := P(c_0, e_1, \ldots, e_r)(t, x_1, \ldots, x_r)$ is the minimal polynomial of ℓ
- for $i = 1, \ldots, n$, the polynomial $w_i := \partial P / \partial U_{0i}(c_0, e_1, \ldots, e_r)(t, x_1, \ldots, x_r)$ verifies $p'(\ell)x_i = w_i(\ell)$

This enables to derive a geometric resolution of V within complexity polynomial in n , deg V and the length of a slp encoding \mathcal{F}_V .

Geometric resolution \rightarrow Chow form:

- Obtain a geometric resolution of Z by specialization of the geometric resolution of V .
- Compute a system of local equations of V at Z (eliminating polynomials of generic linear forms)
- Apply algorithm ChowForm

This procedure computes \mathcal{F}_V within complexity polynomial in n , deg V and the length of a slp encoding the geometric resolution of V .

Corollary From the complexity viewpoint, Chow forms and geometric resolutions are equivalent representations of an equidimensional variety.

GEOMETRIC DEGREE OF A POLYNOMIAL SYSTEM

How can we identify particular instances of the problem which can be solved faster than the general case?

Giusti et al. (1998) introduced a parameter δ associated with the system in the complexity estimates of 0-dimensional system solving.

Let
$$
f_1, \ldots, f_s \in \mathbb{K}[x_1, \ldots, x_n]
$$
.

Consider new variables $(T_{ij})_{1\leq i\leq n, 1\leq j\leq s}$ and polynomials

$$
\widehat{f}_i := \sum_{j=1}^s T_{ij} f_j \qquad i = 1, \dots, n
$$

The geometric degree of the system f_1, \ldots, f_s can be defined as

$$
\delta := \max\{\deg V(\hat{f}_1,\ldots,\hat{f}_\ell): 1 \leq \ell \leq n\}
$$

Remark If deg $(f_i) \leq d$, by Bézout inequality $\delta \leq d^n$, but it can be considerably smaller.

EXPECTED COMPLEXITY

EquiDec is a bounded probability algorithm (error probability $\langle \frac{1}{4}$ on any input). Its complexity on a given input γ can be seen as a random variable $C(\gamma)$ with finite sample set.

Expected complexity of the algorithm $:=$ expectation of the random variable C.

If $V = V(f_1, \ldots, f_s) \subset \mathbb{A}^n$, where $f_1, \ldots, f_s \in$ $\mathbb{K}[x_1,\ldots,x_n]$ satisfy:

- deg $f_i \leq d$ for $1 \leq i \leq s$,
- they are encoded by slp's of length L ,
- δ is the geometric degree of the system,

 ${\rm EquiDec}$ computes $\mathcal{F}_{V_0},\ldots,\mathcal{F}_{V_n}$ within expected complexity

 $s(nd\delta)^{O(1)}L$.

AN APPLICATION: COMPUTATION OF SPARSE RESULTANTS

Let $A \subset (\mathbb{N}_0)^n$ be a finite set containing $\{0, e_1, \ldots, e_n\}.$

 $Vol(A) :=$ normalized volume of the convex hull of A in \mathbb{R}^n .

Theorem (G. J.-T. Krick-J. Sabia-M. Sombra, 2002)

There is a probabilistic algorithm which computes a scalar multiple of the Aresultant within (expected) complexity $(n \text{Vol}(\mathcal{A}))^{O(1)}$.

This follows from the fact that the A-resultant Res_{A} is the Chow form of the toric variety associated with A.