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DEFINITIONS AND NOTATION

K denotes a field with char(K) = 0 and K is
an algebraic closure of K.

If f1,...,fs € Klxq,...,zn], V(f1,..., fs) is the
affine variety

{r e A"(K) : f1(z) =0,..., fs(z) = 0}.

Equidimensional decomposition

Any algebraic variety V. .C A" (or P™) can be
uniquely decomposed in a minimal way as

n
V=W,
r=0

where, for every 0 < r <mn, V, = 0 or V, is
r-equidimensional.

Vo,..., Vn are the equidimensional components
of V.



THE PROBLEM

Given f1,...,fs € K|[zq1,...,xn] defin-
iINng a variety

V= V(fl)"':fS) CAna

obtain algorithmically the equidimen-
sional decomposition

n
V=V,
r=0
that is, provide a characterization for
each of the equidimensional compo-

nents Vp,...,Vy of V.



ALGORITHMS

Assume K is an effective field.

e Input data: Polynomials defining the va-
riety V

e Instructions: Arithmetic operations and
comparisons (= or #)

e Output: A description of each equidi-
mensional component of V

Complexity: Number of instructions.



DESCRIBING EQUIDIMENSIONAL
VARIETIES

An equidimensional variety V C A™ can be
described in different ways:

e Polynomial defining equations:
V: V(f17°°°7f8)

e Geometric resolution:
A generic “parametric” description of V.

e Chow form:
A single multivariate polynomial contain-
ing all the relevant information about V.

T he precise definitions will be given later.



FIRST ALGORITHMS FOR
EQUIDIMENSIONAL
DECOMPOSITION

V =V(f1,-..,fs) CA" (or P7), deg f; < d.

e A. Chistov - D.Y. Grigor'ev (1983)
e M. Giusti - J. Heintz (1991)
(well parallelizable)

Complexities: (sd?*)O(1).

Remarks

e Both algorithms compute the equidimen-
sional components V, recursively, from

r=mn,...,0.

e [ hey vield polynomial defining equations
for the equidimensional components.

e Each polynomial is represented by the vec-
tor of its coefficients.



FURTHER PROBLEM

Construction of an algorithm with com-
plexity polynomial in sd™ (input size).

Some ideas to solve this problem par-
tially:

e Changing the data structure used
to encode polynomials

e Probabilistic algorithms



ENCODING POLYNOMIALS

Let f e Klxq,...,zn]

e Dense form:

Vector of the coefficients of f in a pre-
fixed order of monomials.

Size: number of coefficients of f.

e Straight-line program (sip):

Program whose instructions are +, —, -,
which enables to evaluate f at any given
point a € K".

Size (length of the slp):

L = number of instructions

e Mixed representation:

In dense form with respect to certain vari-
ables and the coefficients by slp’s.



PROBABILISTIC ALGORITHMS

T he algorithm works under certain genericity
conditions depending on parameters whose
values are chosen randomly.

Additional operation allowed: random choice
of a parameter from a prefixed finite set.

For each random choice, there is a non-zero
polynomial whose non-vanishing leads to a
correct computation.

T he error probability of the algorithm can be
estimated by means of the following result
(Schwartz, 1980):

Let f € K[zq,...,zn] be a non-zero
polynomial. Then, if T C K is a finite
set, we have for a randomly chosen
a€clm:

deg(f).

Prob(f(a) =0) < =



COMPUTING EQUATIONS IN
POLYNOMIAL TIME

Theorem (G. J.- J. Sabia, 2000)

Let fl,...,fs & K[wl,,ajn] with
deg f; < d for 1 < <s, and let

V=V({f,...,[fs) = U Vy C A",
r=0

Then, there is a probabilistic algorithm
which computes the equidimensional

decomposition of V within complexity
(Sdn)O(l)_

For every O < r < dimV, the algorithm
yields a set of n 4+ 1 polynomials of de-
grees bounded by deg(V;) defining V.

Remark Output and intermediate re-
sults are encoded by slp’s.



GEOMETRIC RESOLUTIONS

Let V C A"™ be an equidimensional variety
with dimV =r and degV = D.

Assume that #(Vﬂ V(zq,... ,a:r)) = D. Set

.....

K = K(xla"wx?“) ) AZK@K[xl

A geometric resolution of V is defined by:

e a linear form ¢ which is a primitive ele-
ment of K — A.

e the minimal polynomial p € K[z, ..., zr][t]
of £ in A (monic in t).

e a polynomial p € K[xq,...,zr] — {0} and
polynomials v,41,...,vn € Klzy,...,z][t]
with degv; < D — 1 such that

px; =v;(£) inAfori=r—4+1,...,n.



OTHER PROBABILISTIC
ALGORITHMS

(1) M. Elkadi - B. Mourrain (1999).
Complexity: sd°(®) (dense encoding).

(2) G. Lecerf (2000).
Complexity: (sd"L)O(1) (sip’s).

Remarks

e In (1), a non-minimal decomposition of
V' is obtained, and no probability consid-
erations are made.

e Both algorithms compute geometric res-
olutions describing the equidimensional
components.

e In (2), the input is encoded by a slp of
length L.



CHOW FORM OF AN
EQUIDIMENSIONAL VARIETY

Let V C P" be an equidimensional projective
variety definable over K with dimV = r.
For:=20,...r, let

Ui ‘= (U0,Ui1,...,Usp)

L;(Us,x) = Ujpzo+ Ujzz1 + -+ + Ujpan.

The Chow form of V is the unique —up to
scalar factors— squarefree polynomial Fy, €
K[Ug,...,Ur] verifying

Vn{Lo(ug,z) =0,...,Lr(ur,z) =0} # 0

T
fV(qu"?uT):O

The Chow form of an equidimensional affine
variety is the Chow form of its projective clo-
sure.



Remarks

° degUi]-"V:degV Vo<:i:<r

t t
e V= U C; (irr. dec.) = Fy = [l Fg,
i=1 =1

1=

Examples

o V = Pn, FV(U07 IR Un> — det(UlL])OSZSn
0<j<n

e V={p1,...,pp} C P,

Fyv(Uo) = |l Lo(Uo,pj).
1<5<D

Remark
An equidimensional projective variety V C P"
IS uniquely determined by its Chow form:

EevV
)

Lz(u17€):OVOSZST:>fV(uOJ771’7“):0

If V is a projective or affine variety, it is pos-
sible to derive equations for V from Fy .



COMPUTING CHOW FORMS

V=V(f1,...,fs) CP? degf; <d:

e T. Krick (1990), L. Caniglia (1990).

V' equidimensional.

Complexity: (sd)“o(l).

e M. Giusti - J. Heintz (1991).

n
V= | V, equid. decomposition.
r=0
Computation of Fy, ..., Fy, within com-

plexity (sd)”o(l).

Dense encoding = Complexity > d”2



Using straight-line programs

e S. Puddu - J. Sabia (1998)

V irreducible.

Complexity: (sd?)O) if r =dimV.

e G. J. - S. Puddu - J. Sabia (2001)
Computation of Fy,, where r =dimV.

Complexity: (sd?)O(1),

Remarks
e All these algorithms are deterministic.

e Effective quantifier elimination applied to:

JxeP": f1(x) =0A--- A fs(x) =0A
Lo(ug,z) =0A--- A Ly(ur,z) =0



BETTER COMPLEXITY
BOUNDS

Theorem (G. J.-T. Krick-J. Sabia-M.
Sombra, 2002)

Let f1,...,fs € K[z1,...,2n] be polyno-
mials with deg(f;) < d (1 <1 < s) en-
coded by sIp’s of length L, and let

n
V=V(f1,...,fs) = U Vi C A",
r=0
There is a probabilistic algorithm which
computes slp’s of length s(nd”)O(l)L
encoding the Chow forms Fy,...,Fy,
within complexity s(nd?)9L.



Auxiliary result (algorithm ChowForm)

V C A" equidimensional, dimV = r.
Assume that Z .=V nV(xq,...,x2r) is a O-
dimensional variety with deg V' points.

Thereis a deterministic algorithm which com-
putes a slp encoding Fy, from

e a geometric resolution of Z and

e a system of local equations fq,..., fn—r €
Kl[xq1,...,2n] of V at Z.

Complexity and length of the output slp:

(nddeg V)P,

ifdegf; <d (1 <i<n-—r)and fi,..., fnr
are encoded by slp’s of length L.



Sketch of the main algorithm (EquiDec)

1. Input preparation (random).

e n+ 1 linear combinations of fi1,..., fs
e linear change of variables

New polynomials: fi,..., fot1.
For r=20,...,n:
V(fi,..., foer) = WUV, U---UV,

Wis1 NV (fr-r) W,uV,uV with V! CcV

2. Computing Chow forms of a non-minimal
decomposition

Forr=n—-1,...,0 compute:
o Fw.,, .= ChowForm(GR, 41, f1,..., fa—r)
o Fw..avs.) = Inter(Fw,,, for)
o Fyuv :=8Sepy(Wrt1 NV (fa-r), fnrt1)
e GR, := geometric resolution of W,NV (z1,...,x,).

3. Cleaning spurious components
Forr=n—-—2,...,0 compute:

o G, cKl[xy,...,x,] verifying
V! c V(G,) and dim(V, NV (G,)) < r.

() ]rvr = Sep2(fvru\//, G’I’)



CHOW FORMS VS. GEOMETRIC
RESOLUTIONS

Let V C A™ be an r-equidimensional variety
and let Z .=V nV(xq,...,x2p).

Assume that dimZ = 0, degZ = degV and
¢ is a linear form separating the points in Z.

Chow form — Geometric resolution:

Let eg := (1,0,...,0), cg:= coefficients of ¢
and

P .= fV(UO —Toeo, ..., Ur — Treo)

In A:=K(zq,...,xr) ®K[xlme[V], we have:

o p(t) := P(cg,e1,...,er)(t,x1,...,2r) is the
minimal polynomial of /¢
e fore=1,...,n, the polynomial
w; = 0P/0Uy;(co,€e1,---,er)(t,x1,..., )
verifies p'(£)x; = w;(¥)
This enables to derive a geometric resolution

of V within complexity polynomial in n, degV
and the length of a slp encoding Fy .



Geometric resolution — Chow form:

e Obtain a geometric resolution of Z by
specialization of the geometric resolution
of V.

e Compute a system of local equations of V
at Z (eliminating polynomials of generic
linear forms)

e Apply algorithm ChowForm

This procedure computes Fy within com-
plexity polynomial in n, degV and the length
of a slp encoding the geometric resolution of
V.

Corollary From the complexity viewpoint,
Chow forms and geometric resolutions are
equivalent representations of an equidimen-
sional variety.



GEOMETRIC DEGREE OF A
POLYNOMIAL SYSTEM

How can we identify particular instances of
the problem which can be solved faster than
the general case?

Giusti et al. (1998) introduced a parameter §
associated with the system in the complexity
estimates of O-dimensional system solving.

I_et fl,...,fs EK[CU]_,,xn]

Consider new variables (T;;)1<i<n, 1<j<s and
polynomials

s
fiiz ZTZ]f] 1=1,....n
j=1

T he geometric degree of the system f1,..., fs
can be defined as

§ :=max{degV(f1,...,fr) :1<£<n}

Remark If deg(f;) <d, by Bézout inequality
o < d", but it can be considerably smaller.



EXPECTED COMPLEXITY

EquiDec is a bounded probability algorithm
(error probability < % on any input).

Its complexity on a given input v can be seen
as a random variable C'(v) with finite sample
set.

Expected complexity of the algorithm =
expectation of the random variable C.

If V=V(f1,...,fs) C A", where f1,...,fs €
Klx1,...,zn] satisfy:

e deg f; < d for 1 <1 <5,

e they are encoded by sIp’s of length L,

e 0 iS the geometric degree of the system,

EquiDec computes ]—“VO, ..., Fy, within expected
complexity

s(ndé)O(l)L.



AN APPLICATION: COMPUTATION
OF SPARSE RESULTANTS

Let A C (Np)” be a finite set containing
{0,e1,...,€en}.

Vol(A) := normalized volume of the convex
hull of A in R"™,

Theorem (G. J.-T. Krick-J. Sabia-M.
Sombra, 2002)

There is a probabilistic algorithm which
computes a scalar multiple of the A-
resultant within (expected) complexity

(nVol(A))O),

This follows from the fact that the A-resultant
Res 4 is the Chow form of the toric variety
associated with A.



