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Quantum Information

Cannot be cloned or copied
Cannot be broadcast

e Cannot be measured reliably
|s disturbed by observation

Sometimes appears to propagate
instantaneously

e Can exist in superposition
of classical states



Classical Information

Can be copied
Can be broadcast

Can be measured with
arbitrary accuracy

Is not disturbed by observation

Cannot travel faster than light













Classical and Quantum
information together
allow feats that neither
could achieve alone

* Quantum Bank Notes

* Quantum Cryptography

* Quantum Computing

* Quantum Teleportation

» Communication Complexity

* Pseudo Telepathy
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Quantum Cryptography

1/

These states cannot be distinguished reliably
Eavesdropping —>Errors —> Detection

Use quantum channel to send random key
+ classical one-time-pad to send message

—> eavesdropping prevention




Eavesdropping

bits eavesdropped <> errors




Polarizing Filter




Polarizing Filter
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Quantum Cryptography = Quantum Key Distribution (QKD)

- conventional key distribution: \/ secure channel a
s sn ot 2 -

. Alice sends particular key data to Bob

e quantum key distribution:
« key does not exist before transmission

. Alice and Bob generate independent random
“number sets

. remote comparison, bit-by-bit, using a \
photon state preparation & measurement - .
protocol identifies a shared subset

Alice

o
—

- EXAMPLE: polarized single-photons
- Alice prepares vertical or 45 ° polarized photons H \

- Bob measures horizontal or - 45 ° polarization

(o]
- QM gives the probability that Alice’s photon triggers 1|« 0 |50%

Bob’s detector:
- detected photons identify shared bits 0 l/ 50%| O

Bob

R. J. Hughes, LANL 1 =ik



An example of QKD

Step 1: Alice & Bob generate mﬁv 2: Comparison by quan’'m communication
independent random bit sets
Alice| 1 1|0
Alicel 1 [0 [ 1]0 \ 0 \\ 0
Bob| oo f1|1]. U i
Bob| O[O ] 1|1
Step 3: Bob sends Alice (publicly) a .q._.m._m_c:_ N|N|Y|N
copy of the results (but not his

measurement)

Alice| 1 | 0 | 1|0
result| N| N | Y |N

Bob| 0| 0] 1 |
result| N | N | Y | N

retain the “Y” bits: pe~fectly correlated
subset = key __
| _Los Alamaos
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Quantum Cryptography Based on Bell’s Theorem

Artur K. Ekert
Merton College and Physics Department, Oxford University, Oxford OXI 3PU, United Kingdom
(Received 18 April 1991)

Practical application of the generalized Bell's theorem in the so-called key distribution process in cryp-
tography is reported. The proposed scheme is based on the Bohm’s version of the Einstein-Podolsky-
Rosen gedanken experiment and Bell's theorem is used to test for eavesdropping.

PACS numbers: 03.65.Bz, 42.80.Sa, 89.70.4+¢ -

Cryptography, despite a colorful history that goes back
to 400 B.C., only became part of mathematics and infor-
mation theory this century, in the late 1940s, mainly due
to the seminal papers of Shannon [1]. Today, one can
briefly define cryptography as a mathematical system of
transforming information so that it is unintelligible and
therefore useless to those who are not meant to have ac-
cess to it. However, as the computational process associ-
ated with transforming the information is always per-
formed by physical means, one cannot separate the
mathematical structure from the underlying laws of phys-
ics that govern the process of computation [2). Deutsch
has shown that quantum physics enriches our computa-
tional possibilities far beyond classical Turing machines
[2], and current work in quantum cryptography originat-
ed by Bennett and Brassard provides a good example of
this fact [3].

In this paper I will present a method in which the secu-
rity of the so-called key distribution process in cryptogra-
phy depends on the completeness of quantum mechanics.
Here completeness means that quantum description pro-
vides maximum possible information about any system
under consideration. The proposed scheme is based on
the Bohm’s well-known version of the Einstein-Podolsky-
Rosen gedanken experiment [4); the generalized Bell’s
theorem (Clauser-Horne-Shimony-Holt inequalities) [5]
is used to test for eavesdropping. From a theoretical
point of view the scheme provides an interesting and new
extension of Bennett and Brassard's original idea, and
{rom an experimental perspective offers a practical reali-
zation by a small modification of experiments that were
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set up to test Bell's theorem. Before I proceed any fur-
ther let me first introduce some basic notions of cryptog-
raphy.

Originally the security of a cryptotext depended on the
secrecy of the entire encrypting and decrypting pro-
cedures; however, today we use ciphers for which the al-
gorithm for encrypting and decrypting could be revealed
to anybody without compromising the security of a par-
ticular cryptogram. In such ciphers a set of specific pa-
rameters, called a key, is supplied together with the plain-
text as an input to the encrypting algorithm, and together
with the cryptogram as an input to the decrypting algo-
rithm. The encrypting and decrypting algorithms are
publicly announced; the security of the cryptogram de-
pends entirely on the secrecy of the key, and this key,
which is very important, may consist of any randomly
chosen, sufficiently long string of bits. Once the key is es-
tablished, subsequent communication involves sending
cryptograms over a public channel which is vulnerable to
total passive interception (e.g., public announcement in
mass media). However, in order to establish the key, two
users, who share no secret information initially, must at a
certain stage of communication use a reliable and a very
secure channel. Since the interception is a set of mea-
surements performed by the eavesdropper on this chan-
nel, however difficult this might be from a technological
point of view, in principle any classical channel can al-
ways be passively monitored, without the legitimate users
being aware that any eavesdropping has taken place.
This is not so for quantum channels [3]. In the following
I describe a quantum channel which distributes the key
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The promise of diamond semiconductors.
Was early man a heroic hunter—or a scavenger?

Raising the grades in U.S. science education.

Light signals split by a simple prism allow
messages to be transmitted in absolute secrecy.




Quantum Cryptography

For ages, mathematicians have searched for a svstem that would allow two

<

seople to exchange messages in absolute secrecv.
peof g X B

Quantum mechanics has

now joined forces with cryptology to achieve a major step in that direction

by Charles

n his classic short story “The Gold
Bug,” published in 1843, Edgar Allan
Poe explains the rudiments of code
breaking and ventures the opinion that
the human mind can break any cipher
that human ingenuity could devisc. Dur-
ing the subsequent century and a half,
the contest between code makers and
code breakers has undergone reversals
and complications that would have de-
lighted Poe. An unbreakable cipher was
invented in 1918, although its unbreak-
ability was not proved until the 1940s.
This cipher was rather impractical be-
cause it required the sender and receiv-
er to agree beforehand on a key—a
large stockpile of secret random digits,
some of which were used up each time
a secret message was transmitted. More
practical ciphers with short, reusable
keys, or no secret key at all, were devel-
oped in the 1970s, but to this day they
remain in a mathematical limbo, having
neither been broken nor proved secure.
A recent unexpected development is
the use of quantum mechanics to per-
form cryptographic feats unachievable
by mathematics alone. Quantum cryp-
tographic devices typically employ indi-
vidual photons of light and take advan-
tage of Heisenberg's uncertainty prin-
ciple, according to which measuring
a quantum system in general disturbs

13

CHARLES H. BENNETT, GILLES BRAS-
SARD and ARTUR K. EKERT share a
deep interest in the fundamental connec-
tions between physics and the theory of
computation. Bennett and Brassard have
pioneered the field of quantum cryp-
tography. Since 1973 Bennett has been a
researcher at the IBM Thomas J. Watson
Rescarch Center in Yorktown Heights,
N.Y. In 1979 Brassard became a professor
of computer science at the Université de
Montréal, where he currently holds the
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degree from the University of Oxford, is a
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it and yields incomplete information
about its state before the measurement.
Eavesdropping on a quantum communi-
cations channel therefore causes an un-
avoidable disturbance, alerting the le-
gitimate users. Quantum cry ptography
exploits this effect to allow two parties
who have never met and who share no
secret information beforehand to cont-
municate in absolute secrecy under the
nose of an adversary. Quantum tech-
niques also assist in the achievement of
subtler cryptographic goals, important
in the post-cold war world, such as en-
abling two mutually distrustful parties
to make joint decisions based on pri-
vate information, while compromising
its confidentiality as little as possible.

he art of cryptography began at

least 2,500 years ago and has

played an important role in histo-
ry ever since. Perhaps one of the most
famous cryptograms, the Zimmermann
Note, propelled the U.S. into World War
1. When the cryptogram was broken in
1917, Americans learned that Germany
had tried to entice Mexico to join its war
effort by promising Mexico territories in
the US.

Around this time Gilbert S. Vernam
of American Telephone and Telegraph
Company and Major Joseph O. Mau-
borgne of the U.S. Army Signal Corps
developed the first truly unbreakable
code called the Vernam cipher {see box
on page 52]. One distinctive feature of
the code is its need for a key that is
as long as the message being transmit-
ted and is never reused to send anoth-
er message. (The Vernam cipher is also
known as the one-time pad from the
practice of furnishing the key to spies
in the form of a tear-off pad, each sheet
of which was to be used once and then
carefully destroyed.) The discovery of
the Vernam cipher did not create much
of a stir at the time, probably because
the cipher’s unbreakability was not de-
finitively proved until later and be-
cause its massive key requirements
made it impractical for general usc.
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Because of this limitation, soldiers and
diplomats continued to rely on weaker
ciphers using shorter keys. Consequent-
ly, during World War 11, the Allies were
able to read most of the secret mes-
sages transmitted by the Germans and
Japanese. These ciphers, though break-
able, were by no means easy to crack.
[ndeed, the tormidable task of breaking
increasingly sophisticated ciphers was
one of the factors that stimulated the
development of electronic computers.

Academic interest in cryptology grew
more intense in the mid-1970s, when
whittield Diffie, Martin E. Hellman and
Ralph C. Merkle, then at Stanford Uni-
versity, discovered the principle of pub-
lic-key cryptography (PKC). Soon after-
ward, in 1977, Ronald L. Rivest, Adi Sha-
mir and Leonard M. Adleman, then at
the Massachusetts Institute of Technolo-
gy, devised a practical implementation
[see “The Mathematics of Public-Key
Cryptography,” by Martin E. Hellman;
SCIENTIFIC AMERICAN, August 1979).

Public-key cryptosystems differ from
all previous schemes in that parties
wishing to communicate do not need
to agree on a secret key beforehand.
The idea of PKC is for a user, whom we
shall call Alice, to choose randomly a
pair of mutually inverse transforma-
tions—to be used for encryption and
decryption; she then publishes the in-
structions for performing encryption
but not decryption. Another user, Bob,
can then use Alice’s public-encryption
algorithm to prepare a message that
only she can decrypt. Similarly, anyone,
including Alice, can use Bob’s public-
encryption algorithm to prepare a mes-
sage that only he can decrypt. Thus, Al-
ice and Bob can converse secretly even
though they share no secret to begin
with. Public-key cryptosystems are espe-
cially suitable for encrypting electronic
mail and commercial transactions, which
often occur between parties who, unlike
diplomats and spies, have not anticipat-
ed their need to communicate secretly.

Offsetting this advantage is the fact
that public-key systems have not been

proven to be secure. Indeed, in 9S82
Shamir, now at the Weizmann Insti-
tute of Science in Israel, cracked one of
the carly public-key cryptosystems, the
knapsack cipher. Poe could be smiling
from the grave, knowing there is a clev-
er method of attack, as yet undiscov-
ered, that could break any of these ¢i-
phers in a tew minutes.

everal years before the discovery

of public-key cryptography, an-

other striking development had
quietly taken place: the union of cryp-
tography  with quantum mechanics.
Around 1970 Stephen J. Wiesner, then
at Columbia University, wrote a paper
entitled “Conjugate Coding,” explaining
how guantum physics could be used,
at least in principle, to accomplish two
tasks that were impossible from the
perspective of classical physics. One
task was a way to produce bank notes
that would be physically impossible to
counterfeit. The other was a scheme for
combining two classical messages into
a single quantum transmission from
which the receiver could extract either
message but not both. Unfortunate-
ly, Wiesner's paper was rejected by the
journal to which he sent it, and it went
unpublished until 1983. Meanwhile, in
1979, two of us (Bennett and Brassard)
who knew of Wiesner's ideas began
thinking of how to combine them with

QUANTUM DEVICE generates and measures extremely faint
flashes of polarized light, providing a secure way to transmit

public-key cryptography. We soon real-
ized that they could be used as a substi-
tute for PRC: two users, who shared no
secret initially, could communicate se-
cretly, but now with absolute and prov-
able security, barring violations of ac-
cepted physical laws.

Our early quantum cryptographic
schemes, developed between 1982 and
1984, were somewhat impractical, but
refinements over the next few years
culminated in the building of a tully
working prototype at the IBM Thomas
J. Watson Research Center in 1989.
John Smolin, now at the University of
California at Los Angeles, helped to
build the electronics and optics tor the
apparatus, and Francois Bessette and
Louis Salvail of the University of Mon-
treal assisted in writing the software.
At about the same time, the theoretical
ideas of David Deutsch of the Universi-
ty of Oxford led one of us (Ekert) to
conceive of a slightly ditferent crypto-
system based on quantum correlations.
In early 1991, utilizing ideas conceived
by Massimo Palma of the University of
Palermo, John Rarity and Paul Tapster
of the British Defence Research Agency
started experiments implementing Ek-
ert's cryptosystem.

To explain how such systems work,
we need to describe in more detail some
aspects of the mathematics of classical
cryptography, especially the role of the

Key. In the carly days of crypt
the security of a cipher dependes
secrecy of the entire encryption

cryption procedure. Today such

dures are usually known publu
the key is kept secret. in such
the Key is used to control and «
ize the encryption and decrypth
cesses in such a way that an <
who has intercepted the cryg
and knows the general meth
ey ption but not the key wi
to infer anything useful abou
nal message. Consequently,
sram may be hroadcast over s
channel such as a radio or prii

newspaper. The Key, however o
sent through a very secure prival
nel, such as a clandestine mech)
delivery by a trusted courier. 5
the distribution of a Key ovel

channels is expensive, it make:
ble subsequent secret commu!
over inexpensive public channel

Ultimately, the security of o

gram depends on the length ol |
In two brilliant papers written
1940s, Claude E. Shannon, thei
Laboratories, showed that if tlu
shorter than the message being
ed, some information about 1l
sage can be inferred from the

gram by a sufficiently powertul
sary. This leakage of information
regardless of how complicatet!

information [see illustration on pages 56 and 571. Orl .
each flash consists of one tenth of a photon.
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OUANTUM DEVICE generates and measures extremely faint information [see illustration on pages 56 and 57 ). On averageg
flashes of polarized light, providing a secure way to transmit each flash consists of one tenth of a photon.
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. single-photon interference over 24-km
optical paths within installed,
underground fiber

. first demonstration of QKD outside
a laboratory
- “real-world” environment

“long” path
attenuator AT ~5ns o_mo:o.o!_o
phase-shifter
Bob

At ~ 300 ps \ \
1.3-pm . e
Tooled
sed ™
At > WW* e InGaAs APD
\ - detector

24 km of /
50/50 fiber underground
couplers optical fiber . .
P Alice P PZT
driven
air gap

o i = |
onl Mo L ._W S ¢

NATIOS AT Ep e Py

A. J. Hughes, LANL 19868
















¥

Quantum Security...
at last

Quantum Key Distribution System

Key distribution over optical fiber
with absolute security

- Key distribution is a central problem in
Main features cryptography. Currently. pubkc key cryptography
P First quantum cryptography system ia commonly used to solve it. However, these

algorithms are vulnerable 1o increasing compuler

P Security guaranteed by quantum physics power. ln addibion, their securnity has never been

P Point-to point key distribution formally proven.

P Standard optical fiber °  Quantum cryptography exploits a fundamentat

. ; prncple of quantum physics - ocbservation

B Distances up to 70 km causes perturbation - o disinbute cryptographic

P Key rate up to 1000 bits/s keys with absolute security.

B Compact and reliable i Quantique s miroducing the fs! guantum key
deatribution system. it consists of an emitter anc a
recasver, which can be connected to PC's throwgh
tha USB port.

id Quantique
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Limitations on Practical Quantum Cryptography

Gilles Brassard,! Norbert Liitkenhaus,? Tal Mor,* and Barry C. Sanders’

lDépartement IRO, Université de Montréal, C.P. 6128, succursale centre-ville, Montréal, Québec Canada H3C 3J7
2Helsinki Institute of Physics, P.O. Box 9, 00014 Helsingin yliopisto, Finland
3Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095-1594
*Electrical Engineering, College of Judea and Samaria, Ariel, Israel

SDepartment of Physics, Macquarie University, Sydney, New South Wales 2109, Australia
(Received 2 February 2000)

We provide limits to practical quantum key distribution, taking into account channel losses, a realistic
detection process, and imperfections in the “qubits” sent from the sender to the receiver. As we show,
even quantum key distribution with perfect qubits might not be achievable over long distances when
the other imperfections are taken into account. Furthermore, existing experimental schemes (based on
weak pulses) currently do not offer unconditional security for the reported distances and signal strength.
Finally we show that parametric down-conversion offers enhanced performance compared to its weak

coherent pulse counterpart.

PACS numbers: 03.67.Dd, 05.40.Ca, 42.50.Dv, 89.80.+h

Quantum information theory suggests the possibility of
accomplishing tasks that are beyond the capability of clas-
sical computer science, such as information theoretically
secure cryptographic key distribution [1,2]. Currently, we
lack security proofs for standard (secret and public) key
distribution schemes, and the most widely used classi-
cal schemes become insecure against potential attacks by
quantum computers [3].

Whereas the security of idealized quantum key distri-
bution (QKD) schemes has been reported against very so-
phisticated collective [4] and joint [5] attacks, we show
here that already very simple attacks severely disturb the
security of existing experimental schemes, for the chosen
transmission length and signal strength. For a different pa-
rameter region a positive security proof against individual
attacks has been given recently [6] making use of ideas
presented here.

In the four-state scheme [1], usually referred to as
Bennett-Brassard-84 (BB84), the sender (Alice) and
the receiver (Bob) use two conjugate bases (say, the
rectilinear basis, +, and the diagonal basis, X) for the
polarization of single photons. In basis + they use
the two orthogonal basis states |0+) and |1+) to rep-
resent “0” and “1,” respectively. In basis X they use
the two orthogonal basis states [0x) = (10+) + 114))/v2
and |1x) = (104+) — |14+))/+2 to represent 0 and 1. The
basis is revealed later on via an authenticated classical
channel that offers no protection against eavesdropping.
The signals where Bob used the same basis as Alice form
the sifted key on which Bob can decode the bit value.
The remaining signals are ignored in the protocol and in
this security analysis. Finally, Alice and Bob use error
correction and privacy amplification [7,8] to obtain a
secure final key [5].

In order to be practical and secure, a QKD scheme must
be based on existing—or nearly existing —technology, but
its security must be guaranteed against an eavesdropper

1330 0031-9007/00/85(6)/1330(4)515.00

with unlimited computing power whose technology is lim-
ited only by the laws of quantum mechanics. The experi-
ments are usually based on weak coherent pulses (WCP)
as signal states with a low probability of containing more
than one photon [7,9-11]. Initial security analysis of such
weak-pulse schemes was done [7,12], and evidence of
some potentially severe security problems (not existing for
the idealized schemes) was shown [12,13].

Using a conservative definition of security, we provide
several explicit limits on experimental QKD. First, we
show that secure QKD to arbitrary distance can be totally
impossible for given losses and detector dark counts, even
with the assumption of a perfect source. Second, we show
that QKD can be totally insecure even with perfect de-
tection, due to losses and multiphoton states. Combin-
ing these results we compute a maximal distance beyond
which (for any given source and detection units) secure
QKD schemes cannot be implemented. Finally, we estab-
lish the advantage of a better source, which makes use of
parametric down-conversion (PDC).

The effect of losses is that single-photon (SP) signals
will arrive only with a probability F at Bob’s site where
they will lead to a detection in Bob’s detectors with a prob-
ability ng (detection efficiency). This leads to an expected
probability of detected signals given by p3E™! = Frnp.
For optical fibers, as used for most current experiments,
the transmission efficiency F is connected to the absorp-
tion coefficient B and length ¢ of the fiber and a distance-
independent constant loss in optical components ¢, via the
relation

F = 10—(,Be+c)/10 (1)

which, for given B and ¢, gives a one-to-one relation be-
iween distance and transmission efficiency. Also, QKD
can be achieved through free space [7,11], in which case

© 2000 The American Physical Society



Beyond Key Distribution

e Private quantum channels
® Coin flipping
® Bit commitment

¢ Oblivious transfer

@ Discreet decision making

e Zero-knowiedge

e Authentication
e Signature

® etc, etc, etc...
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(coin tossing)

Fun but known
to be Insecure

from the start!
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The Trouble with Quantum Bit Commitment

Dominic Mayers
Département IRO, Université de Montréal
C.P. 6128, succursale Cenire-Ville, Montréal (Québec), Canada H3C 3J7.

(April 28, 2001)

Abstract

In a recent paper, Lo and Chau explain how to break a family of quantum bit
commitment schemes, and they claim that their attack applies to the 1993
protocol of Brassard, Crépeau, Jozsa and Langlois (BCJL). The intuition
behind their attack is correct, and indeed they expose a weakness common
to all proposals of a certain kind, but the BCJL protocol does not fall in this
category. Nevertheless, it is true that the BCJL protocol is insecure, but the
required attack and proof are more subtle. Here we provide the first complete

proof that the BCJL protocol is insecure.
1994 PACS numbers: 03.65.Bz, 42.50.Dv, 89.70.+c
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Is Quantum Bit Commitment Really Possible?

Hoi-Kwong Lo* and H. F. Chau!
School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540
(March 23, 2001)

We show that all proposed quantum bit commitment schemes are insecure because the sender,
Alice, can almost always cheat successfully by using an Einstein-Podolsky-Rosen type of attack and
delaying her measurement until she opens her commitment.

PACS Numbers: 89.70.+c, 03.65.Bz, 89.80.+h

Work on quantum cryptography was started by S. J.
Wiesner in a paper written in about 1970, but remained
unpublished until 1983 [1]. Recently, there have been
lots of renewed activities in the subject. The most well-
known application of quantum cryptography is the so-
called quantum key distribution (QKD) [2—4], which is
useful for making communications between two users to-
tally unintelligible to an eavesdropper. QKD takes ad-
vantage of the uncertainty principle of quantum mechan-
ics: Measuring a quantum system in general disturbs it.
Therefore, eavesdropping on a quantum communication
channel will generally leave unavoidable disturbance in
the transmitted signal which can be detected by the legit-
imate users. Besides QKD, other quantum cryptographic
protocols [5] have also been proposed. In particular, it is
generally believed [4] that quantum mechanics can pro-
tect private information while it is being used for public
decision. Suppose Alice has a secret  and Bob a secret
y. In a “two-party secure computation” (TPSC), Alice
and Bob compute a prescribed function f(z,y) in such a
way that nothing about each party’s input is disclosed to
the other, except for what follows logically from one’s pri-
vate input and the function’s output. An example of the
TPSC is the millionaires’ problem: Two persons would
like to know who is richer, but neither wishes the other
to know the exact amount of money he/she has.

In classical cryptography, TPSC can be achieved ei-
ther through trusted intermediaries or by invoking some
unproven computational assumptions such as the hard-
ness of factoring large integers. The great expectation
is that quantum cryptography can get rid of those re-
quirements and achieve the same goal using the laws of
physics alone. At the heart of such optimism has been
the widespread belief that unconditionally secure quan-
tum bit commitment (QBC) schemes exist [6]. Here we
put such optimism into very serious doubt by showing
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that all proposed QBC schemes are insecure: A dishon-
est party can exploit the non-local Einstein-Podolsky-
Rosen (EPR) [18] type correlations in quantum mechan-
ics to cheat successfully. To do so, she generally needs
to maintain the coherence of her share of a quantum sys-
tem by using a quantum computer. We remark that all
proposed QBC schemes contain an invalid implicit as-
sumption that some measurements are performed by the
two participants. This is why this EPR-type of attack
was missed in earlier analysis.

Let us first introduce bit commitment. A bit com-
mitment scheme generally involves two parties, a sender,
Alice and a receiver, Bob. Suppose that Alice has a bit
(b = 0 or 1) in mind, to which she would like to be
committed towards Bob. That is, she wishes to provide
Bob with a piece of evidence that she has already chosen
the bit and that she cannot change it. Meanwhile, Bob
should not be able to tell from that evidence what b is.
At a later time, however, it must be possible for Alice
to open the commitment. In other words, Alice must be
able to show Bob which bit she has committed to and
convince him that this is indeed the genuine bit that she
had in mind when she committed.

A concrete example of an implementation of bit com-
mitment is for Alice to write down her bit in a piece of
paper, which is then put in a locked box and handed
over to Bob. While Alice cannot change the value of the
bit that she has written down, without the key to the
box Bob cannot learn it himself. At a later time, Alice
gives the key to Bob, who opens the box and recovers the
value of the committed bit. This illustrative example of
implementation is, however, inconvenient and insecure.
A locked box may be very heavy and Bob may still try
to open it by brute force (e.g. with a hammer).

What do we mean by cheating? As an example, a
cheating Alice may choose a particular value of b during
the commitment phase and tell Bob another value during
the opening phase. A bit commitment scheme is secure
against a cheating Alice only if such a fake commitment
can be discovered by Bob. For concreteness, it is instruc-
tive to consider a simple QBC protocol due to Bennett
and Brassard [2]. Its procedure goes as follows: Alice and
Bob first agree on a security parameter, a positive integer
s. The sender, Alice, chooses the value of the committed
bit, b. If b = 0, she prepares and sends Bob a sequence
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The claim of quantum cryptography has always been that
it can provide protocols that are unconditionally secure, that
is, for which the security does not depend on any restriction
on the time, space or technology available to the cheaters.
We show that this claim does not hold for any quantum bit
commitment protocol. Since many cryptographic tasks use
bit commitment as a basic primitive, this result implies a
severe setback for quantum cryptography. The model used
encompasses all reasonable implementations of quantum bit
commitment protocols in which the participants have not met
before, including those that make use of the theory of special
relativity.

1994 PACS numbers: 03.65.Bz, 42.50.Dv, 89.70.+c

a. Introduction. Quantum cryptography is often as-
sociated with a cryptographic application called key dis-
tribution [1,2] and it has achieved success in this area [5).
However, other applications of quantum mechanics to
cryptography have also been considered and a basic cryp-
tographic primitive called bit commitment, the main fo-
cus of this letter, was at the basis of most if not all of
these other applications [3,6,15,5].

In a concrete example of bit commitment, a party, Al-
ice, writes a bit b on a piece of paper and puts it into a
safe. She gives the safe to another party, Bob, but keeps
the key. The objective of.this scheme, and of bit com-
mitment in general, is that Alice cannot change her mind
about the value of the bit b, but meanwhile Bob cannot
determine the bit b. At a later time, if Alice wants to
unveil b to.Bob, she gives the key to Bob.

In 1993, a protocol was proposed to realize bit com-
mitment in the framework of quantum mechanics, and
the unconditional-security (see sections b and ¢) of this
protocol has been generally accepted for quite some time.
However, this result turned out to be wrong. The non
security of this protocol, called the BCJL protocol, was
realized in the fall of 1995 [12]. After this discovery, Bras-
sard, Crépeau and other researchers have tried to find
alternative protocols [4]. Some protocols were based on
the theory of special relativity. For additional informa-
tion about the history of the result see [5]. See also [11].

Here it is shown that an unconditionally secure bit
commitment protocol is impossible, unless a computing
device, such as a beam splitter, a quantum gate, etc. can
be simultaneously trusted by both participants in the
protocol. This encompasses any protocol based on the
theory of special relativity. A preliminary version of the

proof appeared in [13].

b. The model for quantum protocols. It is neither
possible in this letter to describe in detail a model for
two-party quantum protocols, nor is it is useful for tle
purpose of this letter. The following description includes
all that is necessary for our proof.

In our model, a two-party quantum protocol is exe-
cuted on a system Ha ® Hz ® Hg where Hy and Hp
correspond to two areas, one on Alice’s side and one on
Bob’s side, and Hg corresponds to the environment. We
adopt the “decoherence” point of view in which a mixed
state p of Ha® Hp is really the reduced state of H4Q Hp
entangled with the environment Hpg, the total system
H, ® Hp ® Hg always being in a pure state ). The
systems H 4 and Hpg contain only two dimensional quan-
tum registers. Higher dimensional systems can be con-
structed out of two dimensional systems. Alice and Bob
can execute any unitary transformation on their respec-
tive system. In particular, they can introduce new quan-
tum registers in a fixed state |0). States that correspond
to different number of registers can be in linear super-
position. Any mode of quantum communication can be
adopted between Alice and Bob.

Without loss of generality, we can restrict ourselves to
binary outcome measurements. The environment is of
the form Hg = Hs ® Hg, 4 ® Hg, p where Hs=Hga®
Hg p is a system that stores classical bits that have been
transmitted from Hg 4 on Alice’s side to Hg,p on Bob’s
side or vice versa, and Hg, 4 and Hg, p store untransmit-
ted classical bits that are kept on Alice’s side and Bob’s
side respectively. To execute a binary outcome measure-
ment, a participant P € {4, B}, where A and B stand for
Alice and Bob respectively, introduces a quantum regis-
ter in a fixed state |0). The participant P entangles this
register with the measured system initially in a state |@)
and obtains a new state of the form «|0)|do) + 8 |1}]¢1).
Then, he sends the new quantum register away to a mea-
suring apparatus in Hg, p which amplifies and stores each
component |z) as a complex state |z)(Z+F). The resulting
state is a[0)(E-P)|¢g) + B |1)(F-P)|¢1). Similarly, to gen-
erate a random bit one simply maps |0} into a |0) + 3 {1)
and sends the register away in some part of Hg, p that will
amplify and store it as a state a [0)(E-P) 4+ 3 |1)(E-P). The
transmission of a classical bit z from Alice to Bob is rep-
resented by a transformation that maps |z)(Z+4)|0)(E+B)
into |z)(SA)|z)(SB). A similar transformation exists for
the transmission of a classical bit from Bob to Alice.

Now, let us assume that the total system is in a super-
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