

Sean Hallgren Caltech

The usefulness of the QFT

- Main component in quantum algorithms:
 - Recursive Fourier Sampling
 - Simon's Problem
 - Factoring and discrete log
 - Hidden subgroup problem
 - Hidden coset problem
 - Solvable groups
 - Pell's equation

(Everything...)

Outline

- Part 1: The quantum Fourier transform (QFT)
 - Definition
 - How to compute it
- Part 2: Fourier Sampling
 - The hidden subgroup problem.
 - Primitive used in quantum algorithms.

Why is the QFT so useful?

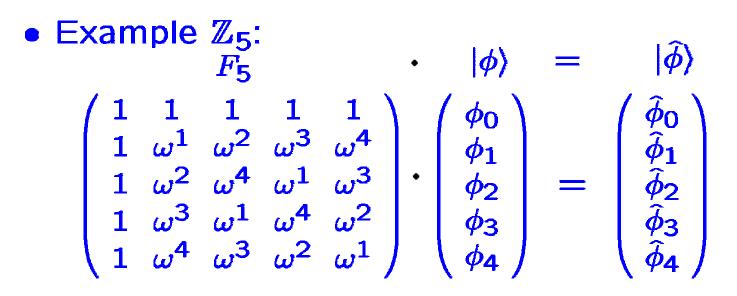
- Can be computed fast: The (Q)FT is a unitary transformation on vector space of dim n
 - Classically in time $n \log n$ Quantum in time $\log^2 n$

an exponential speedup!

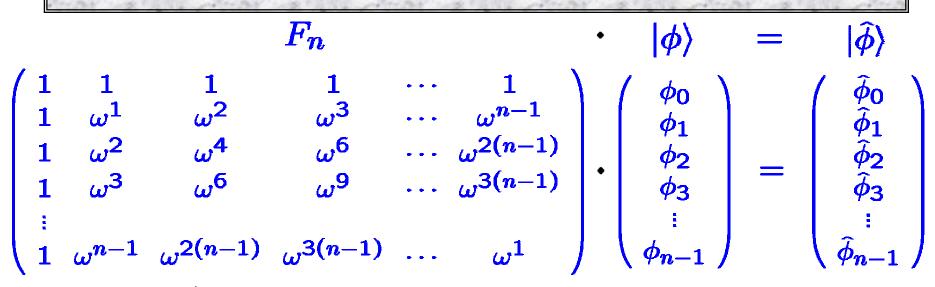
- There are limitations however: Exponential resources VS. Limited access
 - Limited ways to set up input (quantum states).
 - Limited ways to access output.

Definition of the QFT

- $F_G : \mathbb{C}^{|G|} \to \mathbb{C}^{|G|}$ is a unitary transformation defined w.r.t. some finite group G
- This talk: restrict to cyclic groups \longrightarrow abelian groups follows from this
- Cyclic group \mathbb{Z}_n , n a positive integer. - $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$, addition modulo n.



Definition (cont.)



Classical:

Entry $i, j = \omega^{ij}$

 $|\phi\rangle$ is the input vector $|\hat{\phi}\rangle$ is the output vector FFT in time $n \log n$ **Quantum:** $|\phi\rangle$ and $|\hat{\phi}\rangle$ are quantum states QFT in time $\log^2 n$

Computing the QFT over cyclic groups

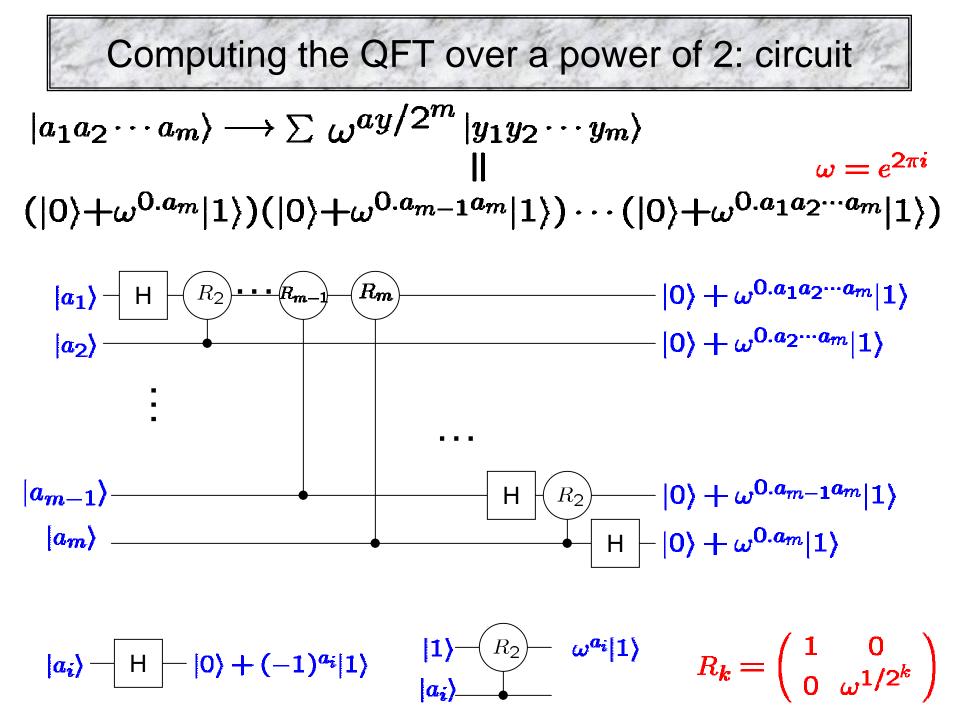
- Two cases:
 - Easier: $n = 2^m$.
 - Harder: n an arbitrary integer, e.g. a prime.
 Uses the power of 2 Fourier transform.

Computing the QFT over a power of 2 $n = 2^m$ Cleve, Ekert, Macchiavello, Mosca 1996.

Basis vector $|a\rangle = |a_1 a_2 \cdots a_m\rangle$: $|a_1 a_2 \cdots a_m\rangle \xrightarrow{F_n} \sum_{y} \omega^{ay/2^m} |y_1 y_2 \cdots y_m\rangle \qquad \omega = e^{2\pi i}$

 $(|0\rangle + \omega^{0.a_m}|1\rangle)(|0\rangle + \omega^{0.a_{m-1}a_m}|1\rangle)\cdots(|0\rangle + \omega^{0.a_1a_2\cdots a_m}|1\rangle)$

$$\omega^{ay/2^{m}}|y_{1}\cdots y_{m}\rangle = \\ \omega^{(0.a_{m})y_{1}}|y_{1}\rangle\omega^{(0.a_{m-1}a_{m})y_{2}}|y_{2}\rangle\cdots\omega^{(0.a_{1}a_{2}\cdots a_{m})y_{m}}|y_{m}\rangle$$

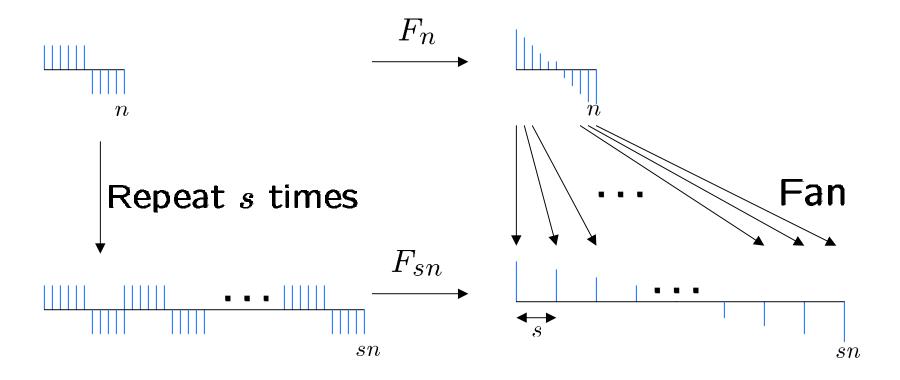


Computing the QFT over cyclic groups

- Kitaev (1995)
- Hales, H. (2000) Today
- Parallel circuits:
 - Cleve, Watrous (2000)
 - Hales (2002, PhD Dissertation)

Two facts about the QFT

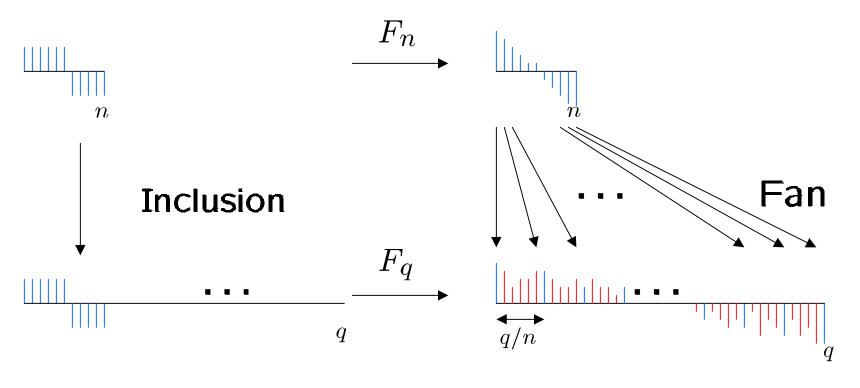
1) Repeated superposition This diagram commutes.



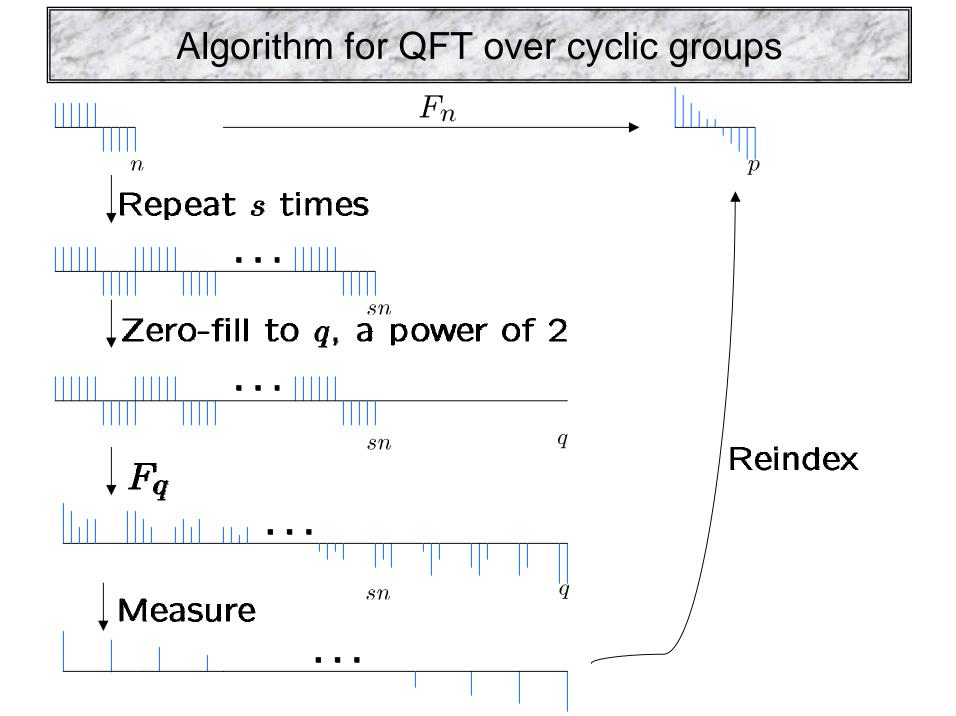
(Same superposition spaced out.)

Two facts about the QFT

2) Zero-filling This diagram commutes, but not as well.



Discard the red points.



Parameters

Theorem (Approximating F_n) Repeat the vector $s = \frac{\log^2 n}{\epsilon^4}$ times. Choose $q = \frac{sn}{\epsilon^2}$. Then the algorithm ϵ -approximates F_p and runs in time $O(m \log m \log \log m + \log^2 \frac{1}{\epsilon})$ $m = \log n$

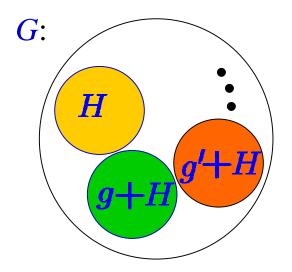
Need a Fourier transform over a power of 2. Two choices:

- 1) Coppersmith approximate circuit
- 2) Cleve, Watrous parallel circuit

Part 2: Quantum Fourier Sampling

The hidden subgroup problem (finite abelian groups)

Given $f: G \rightarrow$ Colors, constant and distinct on cosets of a subgroup H, find H.



Examples

- Factoring n: $G = \mathbb{Z}_m$, $m = \phi(n)$
- Discrete log: $G = \mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1}$

Properites of the Fourier transform

finite group

Two properties of the FT over G:

1) subgroup $H \longrightarrow \text{perp group } H^{\perp}$ $\sum_{h \in H} |h\rangle \xrightarrow{F_G} \sum_{h' \in H^{\perp}} |h'\rangle$

2) convolution \longrightarrow pt. wise multiplication $|g\rangle * \sum_{h \in H} |h\rangle \xrightarrow{F_G} \sum_{h'} \alpha_{g,h'} |h'\rangle \bullet \sum_{h' \in H^{\perp}} |h'\rangle$ $\| \sum_{h' \in H^{\perp}} \alpha_{g,h'} |h'\rangle$

Creating a superposition on a coset

Given $f: G \rightarrow$ Colors, constant and distinct on cosets of a subgroup H, find H.

1)
$$|0,0\rangle \xrightarrow{F_G} \sum_{g \in G} |g,0\rangle \xrightarrow{f} \sum_{g \in G} |g,f(g)\rangle$$

After measuring:

Measure

 $\sum_{h\in H} |g+h,f(g)\rangle$

Rewrite as:

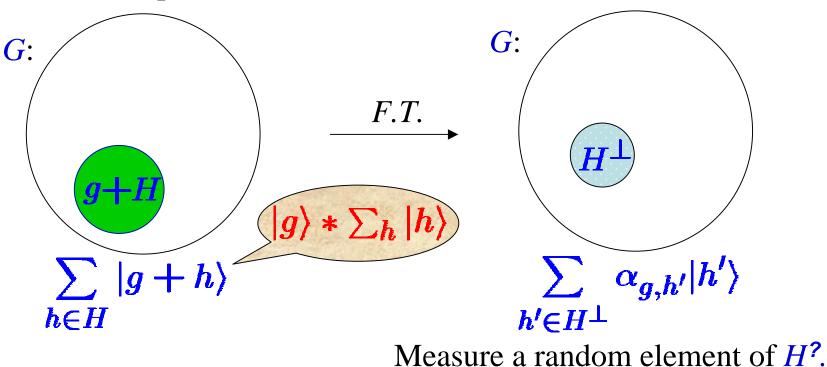
$$\sum_{h\in H} |g+h\rangle$$

The hidden subgroup problem algorithm

Given $f: G \rightarrow$ Colors, constant and distinct on cosets of a subgroup H, find H.

Algorithm:

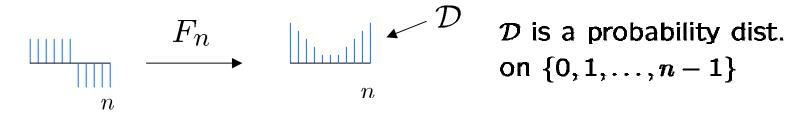
2) Fourier sample:



3) (Classically) reconstruct H from the samples.

Quantum Fourier sampling

Fourier sample: compute the Fourier transform and measure:



Structure of many quantum algorithms:

Repeat:

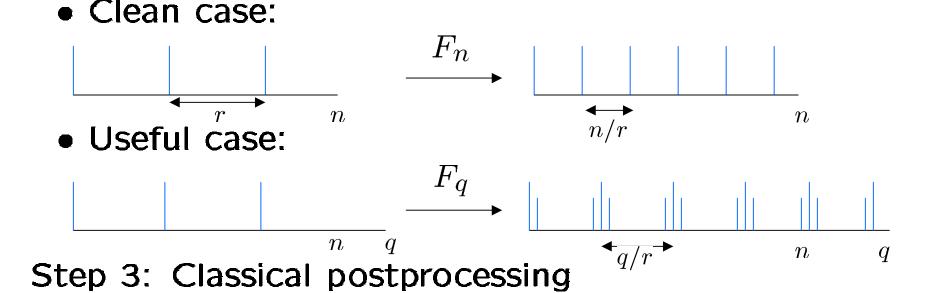
- 1) Set up some superposition
- 2) Fourier sample
- 3) Classical postprocessing

Example: period finding

Step 1: Set up periodic superposition using periodic function $f : \mathbb{Z} \rightarrow$ Colors.

Step 2: Fourier sample.

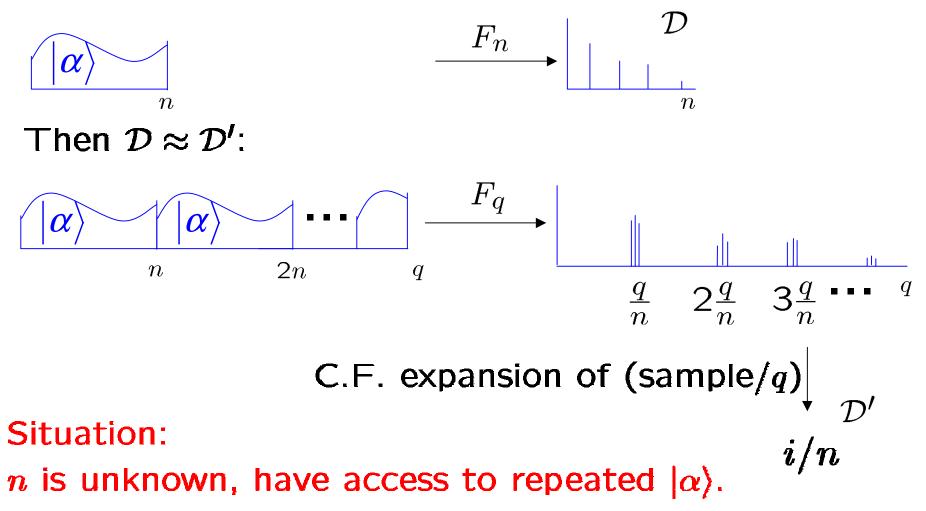
(factoring reduces to period finding)

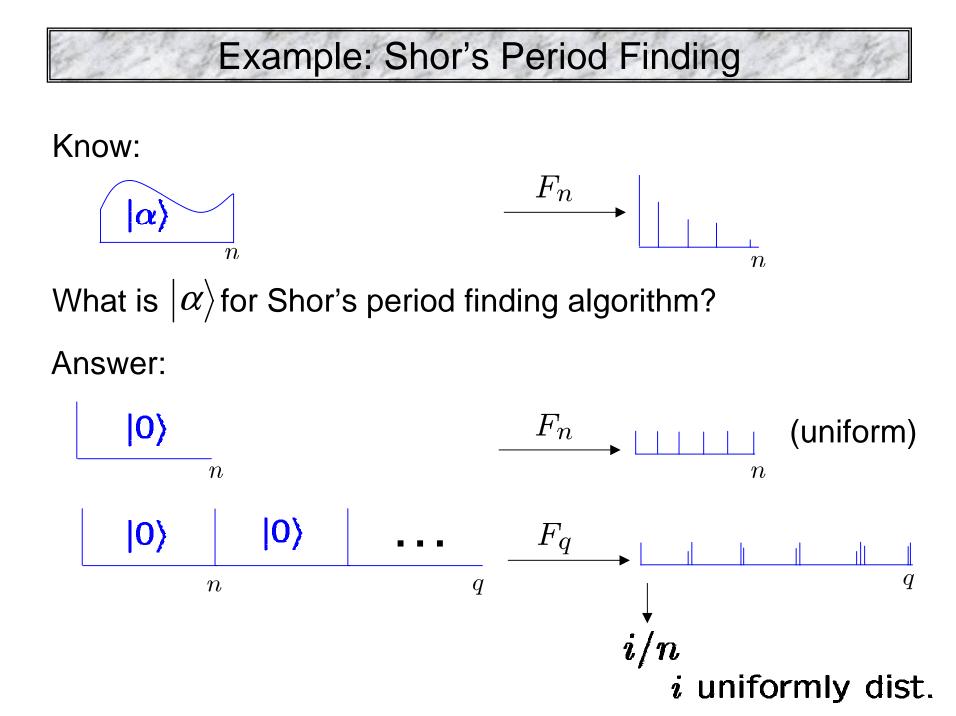


Theorem: useful Fourier sampling \leq clean Fourier sampling

Fourier Sampling Theorem

Arbitrary superposition $|\alpha\rangle$, with *n* unknown. Suppose know \mathcal{D} .

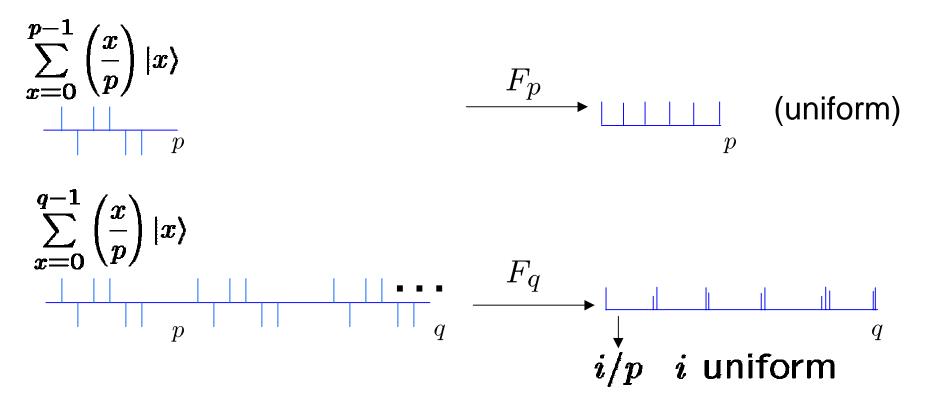




Example: Legendre Symbol

 $\left(\frac{\cdot}{p}\right)$: $\mathbb{Z}_p \to \{\pm 1\}$ specifies whether an element is a square

Suppose can query values of the function, but p is **unknown**. Find p.



Conclusions

Fourier sampling theorem:

- Useful when not possible to use the clean group theoretic case directly.
- Fourier sampling is robust under group changes.
- Other examples:
 - Functions that are not distinct on cosets.
 - Alternate solution to Pell's equation.

Earlier in the talk:

- How to compute Fourier transforms over finite abelian groups
- The hidden subgroup problem