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Integer factoringInteger factoring

The integer factoring problem is as follows:

Input:     a composite integer N.

Output:   any two integers
              such that:

Nba      ====

{{{{ }}}} 1 ,   ,2      , −−−−∈∈∈∈ Nba Κ

For example: if 
                              N=15
then 
                           a=3, b=5
is a correct output.



Integer factoringInteger factoring

The integer factoring problem is as follows:

Input:     a composite integer N.

Output:   any two integers
              such that:

Nba      ====

{{{{ }}}} 1 ,   ,2      , −−−−∈∈∈∈ Nba Κ

For example: if 
                 N= 156,203,777,432,828,093
then
               a= 18,005,557,777 , b= 8,675,309
is a correct output.



Integer factoringInteger factoring

The integer factoring problem is hard for
classical computers (as far as we know).

• no classical polynomial time algorithm is known
  (polynomial means in the number of digits).

• RSA Laboratories will give $1750 to the first
   person that factors this (200-digit) number:

27,997,833,911,221,327,870,829,467,638,722,601,621,070,446,786,955,
428,537,560,009,929,326,128,400,107,609,345,671,052,955,360,856,061,
822,351,910,951,365,788,637,105,954,482,006,576,775,098,580,557,613,
579,098,734,950,144,178,863,178,946,295,187,237,869,221,823,983



Integer factoringInteger factoring

In 1994, Peter Shor (AT&T Labs - Research)
discovered a polynomial-time quantum algorithm
for factoring integers.

In this talk: how quantum computers can factor
integers.

The description will be somewhat different from
Shor’s description, but is equivalent in principle.
See  [Kitaev, 1995], [Cleve, Ekert, Macchiavello
& Mosca, 1998].



Two Main StepsTwo Main Steps

• Phase estimation.

• Reduction of factoring to phase estimation
   (via order-finding).



Phase EstimationPhase Estimation
Suppose we are given a quantum circuit
acting on n qubits:

U

Since U is unitary, it must have
orthonormal eigenvectors 

nN 2====

Nψψψ   ,  ,  , 21 Κ

with corresponding eigenvalues of the form

Ni
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Phase Estimation ProblemPhase Estimation Problem

In general we do not know how to solve this
problem efficiently…

Given:
    quantum circuit U
    an eigenvector      of U    

Goal: 
    compute (or approximate)   , where 

ψ

θ
ψψ θπ         2 ieU ====



Phase EstimationPhase Estimation
However, the problem can be solved efficiently if
instead of a circuit for U we have a circuit as follows:

U

m qubits

n qubits

ϕϕ kUkk       α:Ucm



Phase EstimationPhase Estimation
What does this circuit do?

U

ϕϕ kUkk       α:Ucm

ψ

k k

ψkU



Phase EstimationPhase Estimation
What does this circuit do?

U

ϕϕ kUkk       α:Ucm

ψ

k k

(((( )))) ψθπ kie    2



Phase EstimationPhase Estimation
What does this circuit do?

U

ϕϕ kUkk       α:Ucm

ψ

k k

ψθπ kie    2



Phase EstimationPhase Estimation
What does this circuit do?

U

ϕϕ kUkk       α:Ucm

ψ

k

ψ

ke ki    2 θπ



Phase EstimationPhase Estimation
What does this circuit do?

U

ϕϕ kUkk       α:Ucm
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Phase EstimationPhase Estimation

Uψ
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Simple case:

m
j

2
====θ for {{{{ }}}} 12 , ,0     −−−−∈∈∈∈ mj Κ

easy to create need to compute j from this



Phase EstimationPhase Estimation
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Want some transformation T that acts as follows:
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Equivalently:

This is just the quantum Fourier transform.



Phase EstimationPhase Estimation

Uψ
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Back to simple case:           .
m
j

2
====θ



Phase EstimationPhase Estimation

Uψ
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Back to simple case:           .
m
j

2
====θ

1
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mQFT j



Phase EstimationPhase Estimation

Uψ ψ

Back to simple case:           .
m
j

2
====θ

1
2
−−−−
mQFT jmH ⊗⊗⊗⊗0



Phase EstimationPhase Estimation

General case: θ  is arbitrary.

Uψ ψ

1
2
−−−−
mQFTmH ⊗⊗⊗⊗0

measure

Claim: w.h.p. the result will be some j such
          that           is a good approximation to θ .mj 2 /



Summary of Phase EstimationSummary of Phase Estimation
Have                                    for                 .ψψ θπ         2 ieU ==== ) 1 , 0 [    ∈∈∈∈θ

Uψ

1
2
−−−−
mQFTmH ⊗⊗⊗⊗0

measure
Perform the following computation:

The result is j such that         is a good
approximation to θ with high probability.

mj 2/



Back to FactoringBack to Factoring

We want to reduce factoring to phase estimation.

Factoring

Order Finding

Phase Estimation



Order FindingOrder Finding

Notation:

N {{{{ }}}} 1  ,  ,1  ,0   −−−−==== NΚ

(addition and multiplication always modulo N)

N 
* {{{{ }}}} 1),gcd(  :          ====∈∈∈∈==== Naa N 



Order FindingOrder Finding

For example, if N = 21 and a = 2, then:

,422 ≡≡≡≡ ,823 ≡≡≡≡ ,1624 ≡≡≡≡ ,1125 ≡≡≡≡ 126 ≡≡≡≡

so the order of 2 modulo 21 is 6.

Given              we define the order of a
modulo N  to be the smallest positive integer r
such that

∈∈∈∈a

1    ≡≡≡≡ra (mod N)

N 
*



Order FindingOrder Finding

Relevant facts:

• Factoring is easy if we have the ability to 
   solve order finding.

• We can solve order finding via phase estimation.

The order finding problem is:

Given a and N such that            .

Goal: find the order of a modulo N.

∈∈∈∈a N 
*



Factoring and Order FindingFactoring and Order Finding

Suppose we want to factor N.

Then
)(mod  1   Nar ≡≡≡≡

)(mod  0    1     Nar ≡≡≡≡−−−−����

 1    divides     −−−−����
raN

Assume we have               and we know the
order r of a modulo N.

∈∈∈∈a N 
*



Factoring and Order FindingFactoring and Order Finding

(((( ))))(((( ))))1 1   1  2/2/ ++++−−−−====−−−− rrr aaa

Suppose we are lucky and r is even.  Then

so

(((( ))))(((( ))))1 1   2/2/ ++++−−−− rr aaN  divides

Some of the factors of N divide                 and
some divide           .(((( ))))12/ ++++ra

(((( ))))12/ −−−−ra



Factoring and Order FindingFactoring and Order Finding

(((( ))))(((( ))))1 1   2/2/ ++++−−−− rr aaN  divides

If we are lucky again:

(((( ))))1 ,gcd 2/ −−−−raN

will be a proper divisor of N.

Fact: if we choose               uniformly, we will be
lucky both times with probability at least 1/2.

∈∈∈∈a N 
*



Factoring and Order FindingFactoring and Order Finding

Algorithm to factor N:

Repeat

     Choose a random           .
     Compute the order r of a modulo N.
     If r is even, compute

Until we find a proper divisor d of N
                (or until we get tired).

∈∈∈∈a

(((( ))))1 ,gcd 2/ −−−−==== raNd

N 
*



Order Finding and Phase EstimationOrder Finding and Phase Estimation

Define a transformation            as follows:

xaxM a  : α

aM

(we assume                and arithmetic is modulo N).N ∈∈∈∈x

Our goal is to find the smallest positive r such
that

) (mod  1   Nar ≡≡≡≡

∈∈∈∈aGiven N and           . N 
*



Order Finding and Phase EstimationOrder Finding and Phase Estimation

xaxM a  : α

12
0                 1    −−−−++++++++++++++++==== raaa Λψ

Here is one eigenvector:

(eigenvalue is 1).

What are the eigenvectors/eigenvalues of       ?aM



Order Finding and Phase EstimationOrder Finding and Phase Estimation

1)1(221
1                 1    −−−−−−−−−−−−−−−−−−−− ++++++++++++++++==== rr aaa ωωωψ Λ

Another one:

(so the associated eigenvalue is ω).
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Order Finding and Phase EstimationOrder Finding and Phase Estimation
Suppose we plug          and          into our phase
estimation method:

1ψ
aM

1ψ

1
2
−−−−
mQFTmH ⊗⊗⊗⊗0

aM

With high probability, outcome is j with:

rj m /1        2 / ====≈≈≈≈ θ

measure



Controlled Multiply by Controlled Multiply by aa
We need to be able to implement a              gate
for this procedure to work.

am Mc  

xakxMkxkMc kk
aam           ========

This is just modular exponentiation… can be
implemented reversibly using

gates.

(((( )))) (((( ))))(((( ))))2 log log  NmO



Need Other EigenvectorsNeed Other Eigenvectors
We do not know an easy way to construct         . 1ψ

Instead, what we will do in effect is to randomly
choose one of the eigenvectors

1210   ,   ,   ,   , −−−−rψψψψ Κ

where

1 )1(2 2                 1    −−−−−−−−−−−−−−−−−−−− ++++++++++++++++==== rkrkk
k aaa ωωωψ Λ

and the associated eigenvalue is

r
kik e

  2π
ω ====



Phase EstimationPhase Estimation

kψ

1
2
−−−−
mQFTmH ⊗⊗⊗⊗0

aM

measure

With high probability, outcome is j with:

rkj m /        2 / ====≈≈≈≈ θ
With several samples (with different k each time)
we can determine r with high probability.

(Use continued fraction algorithm for this.)



Remaining ObstacleRemaining Obstacle
Need to (in effect) generate a random eigenvector

1210   ,   ,   ,   , −−−−rψψψψ Κ

(((( ))))               1    1 110 −−−−++++++++++++==== rr
ψψψ Λ

This turns out to be very simple… note that

Running the phase estimation procedure with
     in place of         will be equivalent to randomly
choosing an eigenvector        .

kψ1
kψ



Final Phase Estimation ProcedureFinal Phase Estimation Procedure

With high probability, outcome is j with
                            for random                        . rkj m /    2 / ≈≈≈≈ {{{{ }}}} 1 ,  , 0 −−−−∈∈∈∈ rk Κ

1

1
2
−−−−
mQFTmH ⊗⊗⊗⊗0

aM

measure

After a constant number of samples, r can
be determined with high probability.



Other ProblemsOther Problems
Examples of other problems that can be solved
in quantum polynomial time (but for which no
polynomial-time classical algorithms are known):

• computing discrete logarithms

• generalizations to problems regarding abelian
   groups: decomposition of abelian groups,
   extensions to solvable groups, 
   (abelian) hidden subgroup problem

• solutions to instances of Pell’s equation

• shifted Legendre symbol problem, hidden
   coset problem


