
SPEED
LIMIT

√√√√n

Quantum Lower Bounds
Scott Aaronson (UC Berkeley)
August 29, 2002

Andris Ambainis

I Can’t Believe
It’s Not AndrisTM

Many of the deepest discoveries of science
are limitations

- No superluminal signaling

- No perpetual-motion machines

- No complete axiomitization for arithmetic

What limitations on computing are
imposed by the laws of physics?

Quantum computing lets us seriously
address this question
That’s why everyone should care about it

even if factoring machines are never built

Conjecture 1: Quantum computers can’t solve NP-
complete problems (solve = in polynomial time)

Too hard—we don’t even know if classical ones can

Conjecture 2: Quantum computers can’t solve NP-
complete problems unless classical ones can also

Still too hard
Conjecture 3: Quantum computers can’t solve
NP-complete problems using only ‘brute force’

Looks easier—but can we formalize the
notion of ‘brute force’?

Black-Box Model
Suppose we want to decide whether Boolean
formula ϕ has a satisfying assignment

Brute force might mean we restrict ourselves to
asking, i.e.,

“Does assignment X satisfy ϕ?”

So we’re treating ϕ as a black box

There are 2n possible questions

How many must we ask to know whether any one
has a “yes” answer?

What if we can ask in superposition?

Quantum Query Model

Suppose there are n possible yes/no questions

Let xi∈ {0,1} be answer to question i

In quantum algorithm, each basis state has
form |i,z�, where

i = index to query z = workspace

Query transformation Q maps each |i,z� to
(1-2xi)|i,z�

(i.e. performs phase flip conditioned on xi=1)

Quantum Query Model (con’t)

Algorithm consists of interleaved queries and
unitaries:

U0 � Q � U1 � … � UT-1 � Q � UT

Ut: arbitrary unitary that doesn’t depend on xi’s

(we don’t care how hard it is to implement)

At the end we measure to obtain a basis state |i,z�,
then output (say) first bit of z

Quantum Query Complexity
Let f(X) be the function we’re trying to compute

Algorithm computes f if it outputs f(X) with
probability at least 2/3 for every X

Q(f) = minimum # of queries made by any algorithm
that computes f

Immediate: Q(f) ≤ R(f) ≤ D(f)

R(f) = randomized query complexity

D(f) = deterministic query complexity

Example: Search

Are there any marked items in database?

ORn(x1…xn) = 0 if every xi is 0

1 otherwise

Classical: D(ORn) = R(ORn) = Θ(n)

Quantum: Q(ORn) = O(√n), from Grover’s algorithm

Show: Q(ORn) = Ω(√n)—i.e., Grover’s algorithm is
optimal

Lower Bound Methods
• Hybrid Method

Bennett, Bernstein, Brassard, Vazirani 1994

• Polynomial Method
Beals, Buhrman, Cleve, Mosca, de Wolf 1998

• Adversary Method
Ambainis 2000

We’ll skip (1), and prove search lower bound
with (2) and again (3)

Polynomial Method
Quantum algorithm

that computes f
with few queries

Low-degree
polynomial

approximating f

Low-degree
univariate
polynomial
with large
derivativeOur

Mathematician
Friend

I can prove
this can’t exist!

Multivariate polynomial p approximates f if for
every x1…xn, |p(x1…xn) – f(x1…xn)| ≤ 1/3

deg(f) = minimum degree of polynomial that
approximates f

Proposition: Q(f) ≥ deg(f)/2 for all f

Proof: Initially, amplitude α i,z of each |i,z� is a
degree-0 multilinear polynomial in x1…xn

A query replaces each α i,z by (1-2xi)α i,z, increasing
its degree by 1. The Ut’s can’t increase degree.

At the end, squaring amplitudes doubles degree

~
~

Symmetrization
Given a polynomial p(x1…xn) of degree d, let

Proposition (Minsky-Papert 1968): q(k) is a
univariate polynomial in k, with degree at most d

Proof: Let X=x1…xn and |X|=x1+…+xn. Then

Furthermore, for some a1…ad

which is a polynomial in |X| of degree d.

() 0 1 1sym d
X X

p X a a a
d

� � � �
= + + +� � � �

� � � �
L

() () ()()1 .
!sym

permutations
q X p X p X

n σ
σ= = �

() ()
1

1
n

nx x k
q k EX p x x

+ + =
= � �� �L

K

Markov’s Inequality
Let p be a polynomial bounded in [0,b] in the

interval [0,a], that has derivative at least c
somewhere in that interval. Then

()deg .acp
b

≥

a

b

c

Approximate Degree of OR

The polynomial q(k) has q(0)≤1/3 and q(1)≥2/3,
so |q’(k)|≥1/3 for some k∈ [0,1]

 Since q represents acceptance probability,
q(k)∈ [0,1] for integers k∈ {0…n}

What about non-integer k? If q strays h away
from [0,1], then |q’(k)|≥2h somewhere

So by Markov,

Ehlich-Zeller 1964 / Rivlin-Cheney 1966 / Nisan-Szegedy 1994

() () ()max 1/ 3,2
deg

1 2
n h

q n
h

≥ = Ω
+

What Else The Polynomial
Method Gives Us

Q(Parityn) and Q(Majorityn) are Ω(n)

For any total Boolean f, Q(f) = Ω(D(f)1/6)

(Q(f) = Ω(D(f)1/4) if f is monotone)

Let Yi = input with ith bit 1, all others 0

Feed algorithm as input

Keep track of density matrix ρ of input part

Applying This To Search

1
i

i
Y

n �

1 1

1 1

n n

n n

� �
� �
� �
� �
� �
� �
� �

L

M M

L

Initial ρρρρ:
1

1

n n

n n

ε

ε

±� �
� �
� �
� �
� �±
� �
� �

O

Final ρρρρ:
Off-diagonal
entries
must be
small

Let be sum of off-diagonal entries

S = N-1 initially. By end, need (say) S ≤ N/3

Claim: A query can decrease S by at most O(√N)

Proof: Decompose ρ into pure states, one for each
basis state |i,z� of algorithm part

ij
i j

S ρ
≠

=�

, ,i z i zψ ψ

� �
� �
� �
� �

= � �
� �
� �
� �
� �� �

Querying xi only affects
ith row and ith column

By Cauchy-Schwarz,
each row or column
sums to at most √√√√n

Depth-2 Game-Tree Search

“Recursive Grover” gives

With polynomial method, only know how to get
Q(GameTreen) = Ω(n1/4)

Adversary method gives Q(GameTreen) = Ω(√n)

() ()lognQ GameTree O n n=

OR

ANDAND AND
…

…n
n

Inverting A Permutation

Could this be easier than ordinary search?

Hybrid method gives Q(Invertn) = Ω(n1/3)

Adversary method gives Q(Invertn) = Ω(√n)

5 2 1 7 4 6 3
Problem: Find the 1

Collision Problem
• Given { } { }1... : 1,..., 1,...,nX x x n n= →
• Promised:

(1) X is one-to-one (permutation) or

(2) X is two-to-one

• Problem: Decide which using few
queries to the xi

• R(Collisionn) = Θ(√n)

Brassard-Høyer-Tapp (1997)
O(n1/3) quantum alg for collision problem

n1/3 xi’s, queried classically,
sorted for fast lookup

Grover’s algorithm
over n2/3 xi’s

Do I collide with
any of the pink xi’s?

Result
• Q(Collisionn) = Ω(n1/5) (A 2002)

• Previously no lower bound better
than Ω(1)

• Shi 2002 improved to Ω(n1/4)
Ω(n1/3) when |range| ≥ 3n/2

• Why so much harder than search?

Cartoon Version of Proof
Imagine feeding algorithm g-to-1 functions, where g

could be greater than 2

Let P(g) = expected probability that algorithm outputs
“2-to-1” when given random g-to-1 function

Crucial Lemma: P(g) is a polynomial in g, with
deg(P)≤2T (where T = number of queries)

P(g)∈ [0,1] for integers g, and P’(g)≥1/3 for some
g∈ [1,2]. So we can use Markov’s inequality

Caveat: What does “g-to-1 function” mean if g
doesn’t divide n? (Related to why argument breaks
down for g>√n)

There are no good
open problems left in

quantum lower
bounds

In the collision problem, suppose the
function X:{0,1}n�{0,1}n is 1-to-1
rather than 2-to-1.

Can you give me a polynomial-size
quantum certificate, by which I can
verify that fact in polynomial time?

We know Q(f) = Ω(R(f)1/6) for
Boolean f defined on all 2n inputs.
Can we show a similar bound for f
defined on 1-ε fraction of inputs?

Would be large step toward

Conjecture: If BPPA ≠ BQPA for a
random oracle A with probability 1,
then BPP ≠ BQP

Suppose that whenever our quantum
computer makes a query—replacing |i�
by |i�|xi�—the |xi� register is measured
immediately. Can still do period-
finding in this model, but not Grover
search

Is there any total function for which
we get a speedup over classical?

PHYSICALLY
MOTIVATED

Suppose inputs to Grover’s algorithm are
arranged in a √n-by-√n grid. Our quantum
computer has unbounded memory, but to
move the ‘read’ head one square takes unit
time.

Can we search in less than Θ(n) time?

Marked item

Quantum
computer

