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Interactive Proof SystemsInteractive Proof Systems

Two parties, the prover and the verifier, have
a conversation based on some common input
string x.

• The prover has unlimited computation power.
• The verifier must run in polynomial time (and
   can flip coins).
• The prover wants the verifier to believe that the
   input x is in some fixed language L. The verifier
   wants to verify the validity of this claim.



Interactive Proof SystemsInteractive Proof Systems
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Interactive Proof SystemsInteractive Proof Systems

A language L has an interactive proof system if:

There exists a verifier V such that the following
two conditions are satisfied.

1. (Completeness condition)

    If             then there exists a prover P that can
    convince V to accept x (with high probability).

Lx ∈∈∈∈

2. (Soundness condition)

    If             then no prover can convince V to
   accept x (except with small probability).

Lx ∉∉∉∉



Example: Graph Non-IsomorphismExample: Graph Non-Isomorphism

1G

7

6 5

4

3
2

1

2G

1

6

7

5

4

3
2

The prover wants to convince the verifier that
21 / GG ≅

Suppose the input consists of two graphs:
             and        . 2G1G



Example: Graph Non-IsomorphismExample: Graph Non-Isomorphism
The protocol:

1.  The verifier randomly chooses one of the
 two graphs, randomly permutes it, and
 sends it to the prover.

2.  The prover is challenged to identify
 whether the graph send by the verifier is
 isomorphic to the first or second input graph.

 The prover sends his guess to the verifier.

3.  The verifier accepts if the prover correctly
 guesses the correct graph and rejects
 otherwise.



Which languages have interactiveWhich languages have interactive
proof systems?proof systems?

Let IP denote the class of languages that have
interactive proof systems.

PSPACEIP =
[Lund, Fortnow, Karloff, and Nisan, 1990] + [Shamir, 1990]:

Let IP(m) denote the class of languages having
interactive proof systems where the total number
of messages sent is at most m.

2)2()( Π⊆= IPmIP
[Babai, 1985] + [Goldwasser and Sipser, 1989]:

for any constant m.



NPco-NP

IP = PSPACE

PH
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IP(2)=IP(m)

Diagram of complexity classesDiagram of complexity classes
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Quantum Interactive Proof SystemsQuantum Interactive Proof Systems

As before, the prover and the verifier have
a conversation based on some common input
string x.

• The prover has unlimited quantum computing
   power.
• The verifier must be quantum polynomial-time.
• The prover and verifier have the same goals
   as before.



Quantum Interactive Proof SystemsQuantum Interactive Proof Systems
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Formalizing the modelFormalizing the model
We use the quantum circuit model.  Example of a
circuit for a 4-message quantum interactive proof
system:

)(1 xV

)(2 xP
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message
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output
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Complexity ClassesComplexity Classes

QIP(m)  =  class of languages having quantum
                 interactive proofs with m messages.



FactsFacts

)3(    )( QIPpolyQIP ==== QIP  ====def

EXPQIPPSPACE ⊆⊆⊆⊆⊆⊆⊆⊆

In contrast:

PSPACEpolyIP ====)(

)2(    )( IPconstIP ==== 2Π⊆⊆⊆⊆==== AM



FactsFacts

???  )2(QIP

QMA contains some problems not known to
be in MA (i.e., NP with a probabilistic verifier).

  )1(QIP QMA  ====def PP   ⊆⊆⊆⊆



Diagram of complexity classesDiagram of complexity classes
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Parallelizing quantum interactive proofsParallelizing quantum interactive proofs
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Suppose we have a quantum interactive proof
consisting of several rounds:

1 3 54 62 7

messages:



Parallelizing quantum interactive proofsParallelizing quantum interactive proofs
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1ψ 7ψ6ψ5ψ4ψ3ψ2ψ

Consider the states of the system during some
execution (optimal for the prover):



1V 3V
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1ψ 7ψ6ψ5ψ4ψ3ψ2ψ

Message 1 (of parallelized protocol):

   The prover sends                            to the verifier.mψψ   ,   ,1 Κ

Parallelizing quantum interactive proofsParallelizing quantum interactive proofs



Parallelizing quantum interactive proofsParallelizing quantum interactive proofs

1V 3V
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The verifier now needs to check that these states
are consistent with one another…
 
… this will require 2 additional messages.



Parallelizing quantum interactive proofsParallelizing quantum interactive proofs
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1ψ 7ψ6ψ5ψ4ψ3ψ2ψ

The verifier randomly chooses 2 consecutive
states to test for consistency.

Case 1: states are separated by a verifier
            transformation.



Parallelizing quantum interactive proofsParallelizing quantum interactive proofs

1V 3V

1P
4V2V

2P 3P 4P

4ψ3ψ

The verifier randomly chooses 2 consecutive
states to test for consistency.

Case 1: states are separated by a verifier
            transformation. Easy



Swap testSwap test
Suppose we have two (pure) quantum states:

ϕ ψand

Want to know if they are close together or far
apart.

H H

swap
ϕ

ψ

0 measure



Parallelizing quantum interactive proofsParallelizing quantum interactive proofs
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5ψ4ψ

Case 2: states are separated by a prover
            transformation.



Parallelizing quantum interactive proofsParallelizing quantum interactive proofs

1V 3V
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1++++tψtψ

Messages 2 and 3 (of parallelized protocol):

Verifier sends the message and private
prover qubits of       to the prover… the
prover is challenged to convert        to         .

tψ
tψ 1++++tψ



Parallelizing quantum interactive proofsParallelizing quantum interactive proofs

It turns out that this works.  (Proof is not hard,
but relies heavily on the quantum formalism.)

2m
c

A cheating prover will be caught with probability
at least

for some constant c.

Parallel repetition can be used to reduce soundness
error to be exponentially small… still only use 3
messages.



Bipartite Quantum StatesBipartite Quantum States

21 , HΗ ⊗⊗⊗⊗∈∈∈∈ϕψ

Suppose      and       are bipartite quantum statesψ ϕ

that would “look the same” if       were discarded:2H

ϕϕψψ
22 HH tr    tr ====

Then there exists a unitary operator       acting only
on        such that

ϕψ     )( ====⊗⊗⊗⊗ UI

U
2H



Options for the ProverOptions for the Prover

verifier prover

ψ

ρ

ψψρ provertr====
Mixed state of the verifier’s qubits:

Question: what freedom does the prover have in changing
               the state of the system?

ϕAnswer: the prover can change the state to any        that
             leaves the verifier with mixed state     .ρ

ϕϕprovertr====

ϕα



Options for the ProverOptions for the Prover
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Prover can transform         to         for any       that leaves
the verifier’s qubits in state      .

ψ ϕ ϕ
ρ

ψ



Simulating QIP in EXPSimulating QIP in EXP
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We know QIP = QIP(3), so we can focus on 3-message
proof systems:

message 1 message 3message 2

We want to approximate the maximum probability with
which a prover can convince the verifier to accept.



Simulating QIP in EXPSimulating QIP in EXP
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Based on what we know about bipartite quantum
states, we can focus on just this part of the system,
and completely remove the prover from the picture. 



Simulating QIP in EXPSimulating QIP in EXP
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Simulating QIP in EXPSimulating QIP in EXP

2V1V
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TTF====maximum probability
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This can be approximated by an exponential-size
semidefinite programming problem.



One-message quantum proof systemsOne-message quantum proof systems

We may also consider quantum interactive
proofs where there is no interaction:

“Quantum NP”

Are there properties having succinct quantum
proofs but not succinct classical proofs?



The Group Non-Membership ProblemThe Group Non-Membership Problem

Given elements in some finite group:

kgg ,,1 Κ and h

The property we will be interested in:

“    cannot be generated from                    ”kgg ,,1 Κh



Concrete ExampleConcrete Example

Invertible matrices mod 7:
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Interested in whether h can be generated from 
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Succinct Proofs for Non-Membership?Succinct Proofs for Non-Membership?

• In the case of matrix groups, it is not known if non-
membership has succinct (classical) proofs.

• For black-box groups, non-membership provably
does not have succinct (classical) proofs.

• For all groups, non-membership does have succinct
quantum proofs.



Quantum Proofs for Non-MembershipQuantum Proofs for Non-Membership

Let 

.,,1 kggG Κ=

Write

�
∈

=
Gg

g
G

G 1

G is a quantum proof that            (for any            ). Gh∉ Gh∉

Note: it may be very difficult to construct         . G



Quantum Proofs for Non-MembershipQuantum Proofs for Non-Membership

Suppose we have       (in some register R).
Then we can test membership in G as follows:

G

• Prepare a new qubit B in state

State of the entire system:
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Quantum Proofs for Non-MembershipQuantum Proofs for Non-Membership

2.    Perform a “controlled-multiply-by-h” 
       operation on R (using B as the control).

       State of system:

hGG 1
2

10
2

1 +



Quantum Proofs for Non-MembershipQuantum Proofs for Non-Membership

4.    Measure B.

�
�
�

∉
∈

=
Gh
Gh

   if   1/2
   if    0 

1] isresult Pr[

(Can repeat to reduce probability of error.)
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3. Perform a Hadamard transform on B.

( ) ( )hGGhGG −++ 1
2
10

2
1

State of system:



Quantum Proofs for Non-MembershipQuantum Proofs for Non-Membership

Problem: we cannot trust that R really is in
              state        . G

Before performing the membership test on h, do
the following (several times): 

• Choose a random element g in G.

• Run the membership test on g.

• If the result is “not a member”, then
output “invalid proof”.

    (If the result is “is a member”, then proceed
with the next iteration.)



Open QuestionsOpen Questions
      There are many variants of (classical) interactive proof

systems:

• interactive proofs with stronger restrictions on the
verifier (or on the prover).

• multi-prover interactive proof systems 
• multiple competing provers
• probabilistically checkable proofs
• zero-knowledge

     General problem:

    How do quantum versions of these proof systems
    compare to the classical case?

(Quantum versions of some of these have been studied.)



Open QuestionsOpen Questions

       What else can be said about relations between
 quantum interactive proof system classes and
 other complexity classes?

 What can be said about QIP(2) ?

       Does graph non-isomorphism have succinct
 quantum proofs?


