Quantum Communication Complexity

Ronald de Wolf

UC Berkeley

Overview of the Talk

- 1. The model of communication complexity (classical and quantum)
- 2. Examples of good quantum protocols
- 3. Known limitations of qcc
- 4. Questions you might want to work on

Communication Complexity

- \bullet Information theory $+$ complexity theory
- $\bullet\,$ Alice receives input $x\in \{0,1\}^n$, , Bob receives input $y \in \{0,1\}^n$, and they want to compute $f:\{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$ with minimal communication

 $\bullet\,$ vven-studied classically $$ (Yao 79, Kushilevitz & Nisan 97)

Example: Equality

- $\bullet\,$ EQ(x,y) \equiv 1 iii x \equiv y
- \bullet Deterministic protocols need n bits Randomized: need only $O(\log n)$ bits
- \bullet Let $p_x(z) = x_1 + x_2z + \cdots + x_nz^{n-1},$ choose field F with $|F| \geq 10n$
	- 1. Alice picks $z \in_R F$, sends $(z, p_x(z))$ $\overline{}$ $\overline{\$ $O(log n)$ bits

2. Bob outputs whether $p_x(z) = p_y(z)$

This works because:

 $x = y \Rightarrow p_x(z) = p_y(z)$ for all $z \in F$ $x \neq y \Rightarrow p_x(z) \neq p_y(z)$ for most $z \in F$

Quantum Communication Complexity

- \bullet what if Alice and Bob have a quantum $\hspace{0.1em}$ computer and can send each other qubits?
- Holevo's Theorem (73): k qubits cannot contain more information than k classical bits
- \bullet This suggests that $\hspace{0.1em}$

quantum communication complexity \equiv classical communication complexity ???

 \bullet vvrong!

Why Study Q Communication Complexity?

- For its own sake
- \bullet To get lower bounds for other models $\hspace{0.1em}$
- It proves exponential quantum-classical separations in a realistic model, as opposed to
	- { Black-box algorithms (not realistic)
	- Factoring (no proven separation because we can't prove factoring \notin P)

Example 1: Distributed Deutsch-Jozsa

- Deutsch-Jozsa (black-box problem): Is $x_1 \ldots x_n$ constant or balanced?
- Distributed Deutsch-Jozsa: Are x and y equal or at distance $n/2$?
- \bullet Efficient quantum protocol (BCW 98):

1. Alice sends
$$
|\phi\rangle = \sum_{i=1}^{n} (-1)^{x_i} |i\rangle
$$
 (log *n* qubits)

- 2. Bob changes to $|\psi\rangle = \sum_i (-1)^{x_i + y_i} |i\rangle$
- 3. If $x = y$: $|\psi\rangle = \sum_i |i\rangle$ If d(x; y) = $\frac{\partial}{\partial \theta}$: $|\psi\rangle$ orthogonal to $\sum_i |i\rangle$
- \bullet Classical protocols need almost n pits

Example 2: Disjointness

- \bullet Are $x \subseteq [n]$ and $y \subseteq [n]$ disjoint sets?
- \bullet Classical protocols need almost n pits, even $\hspace{0.1mm}$ if we allow some error probability
- We can use Grover's quantum search to search for an intersection (BCW 98):

 $O(\sqrt{n})$ steps, each step takes $O(\log n)$ qubits of communication $\Longrightarrow O(\sqrt{n}\log n)$ qubits

 \bullet Improved to $O(\sqrt{n}c^{\log^+n})$ (HW 02)

Example 3: Exponential separation (Raz 99)

- $\bullet \,$ Alice gets $v \in \mathbb{R}^n$, orthogonal spaces $M_{\mathbf{0}}, M_{\mathbf{1}}$ Bob gets a unitary U Promise: Uv is either in M_0 or in M_1 Question: which one?
- \bullet 2100 n qubit protocol:
	- 1. Alice sends $|v\rangle$
	- 2. Bob sends back $U|v\rangle$
	- 3. Alice measures if $U|v\rangle \in M_0$ or M_1
- \bullet Classical protocols need $\frac{n-4}{2}$ bits log n (even if we allow error)

Example 4: Fingerprinting

- \bullet Quantum fingerprinting (BCVVVV 01): *n*-bit $x \Longrightarrow \log n$ -qubit $|\phi_x\rangle$, s.t. $\langle \phi_x | \phi_y \rangle$ small
- Simultaneous message passing model:

- \bullet Quantum protocol: Alice sends $|\phi_x\rangle$, Bob sends $|\phi_y\rangle$, referee tests equality
- \bullet Classical lower bound: \sqrt{n} bits (NS 96) $\hspace{0.2cm}$

How to Get Almost-Orthogonal $|\phi_x\rangle$

 $p_x(z) = x_1 + x_2z + \cdots + x_nz^{n-1}$, $|F| = n/\varepsilon$

$$
\bullet \hspace{0.2cm} | \phi_{x} \rangle = \frac{1}{\sqrt{|F|}} \sum_{z \in F} |z\rangle |p_{x}(z) \rangle
$$

$$
\bullet \: \: |\langle \phi_x | \phi_y \rangle| \leq \varepsilon \: \: \text{if} \: \: x \neq y
$$

 \bullet 2 log(n/ε) \equiv 2 log $n+$ 2 log(1 $/\varepsilon$) qubits

Lower Bounds: Inner Product (CDNT 98)

- \bullet Inner product problem: $f(x,y) \equiv x \cdot y \mod 2$
- \bullet Suppose a protocol computes t : $|x\rangle|y\rangle\mapsto (-1)^{x\cdot y}\,\,\lfloor x\rangle\,\,\,\lfloor y\rangle$ Alice Bob
- \bullet Run the protocol on superposition of all y : $|x\rangle \sum |y\rangle \mapsto |x\rangle \sum (-1)^{x \cdot y} |y\rangle$ \sim years and year and ^y
- \bullet Now a Hadamard transform gives Bob $x!$
- \bullet Then n bits have been communicated (Holevo) $\hspace{0.1em}$ \implies protocol must have sent n qubits

Some General Lower Bounds

- 1. Protocols without error probability:
	- $\bullet\,$ Consider communication matrix $M_f [x,y] \equiv\,$ $f(x, y)$, let $rank(M_f)$ be its rank. A protocol for f needs to f needs the f n \mathcal{L} rank (Mf) is a result of \mathcal{L} qubits
	- $\bullet\,$ Equality, disjointness, and most other f : $rank(M_f) = 2^n \Rightarrow$ at least $n/2$ qubits
- 2. With small error probability:
	- \bullet iveed log of approximate rank for M_f
	- \bullet Disjointness needs at least \sqrt{n} qubits (Razborov 02)

Applications to Other Models

General idea: if communication complexity problem A can be embedded in problem B , then lower bounds on A imply lower bounds on B

For example, we can derive lower bounds on:

- Chip size
- Circuit size
- Automata size
- Data structure size

Interesting Open Problems

- Polynomial quantum-classical equivalence for all total functions?
- \bullet Exponential separation for 1-round $\hspace{0.1mm}$ protocols (with only one message)?
- \bullet Can EPR-pairs save communication? Superdense coding can save a factor of 2; public coin flips can save additive log n bits of communication. What else?