Quantum Communication Complexity

Ronald de Wolf

UC Berkeley

Overview of the Talk

- 1. The model of communication complexity (classical and quantum)
- 2. Examples of good quantum protocols
- 3. Known limitations of qcc
- 4. Questions you might want to work on

Communication Complexity

- Information theory + complexity theory
- Alice receives input $x \in \{0,1\}^n$, Bob receives input $y \in \{0,1\}^n$, and they want to compute $f: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$ with minimal communication

 Well-studied classically (Yao 79, Kushilevitz & Nisan 97)

Example: Equality

- EQ(x,y) = 1 iff x = y
- Deterministic protocols need n bits
 Randomized: need only O(log n) bits
- Let $p_x(z) = x_1 + x_2 z + \dots + x_n z^{n-1}$, choose field F with $|F| \ge 10n$
 - 1. Alice picks $z \in_R F$, sends $\underbrace{(z, p_x(z))}_{O(\log n) \ bits}$

2. Bob outputs whether $p_x(z) = p_y(z)$

This works because:

 $x = y \Rightarrow p_x(z) = p_y(z)$ for all $z \in F$ $x \neq y \Rightarrow p_x(z) \neq p_y(z)$ for most $z \in F$

Quantum Communication Complexity

- What if Alice and Bob have a quantum computer and can send each other qubits?
- Holevo's Theorem (73):

k qubits cannot contain more information than k classical bits

• This suggests that

quantum communication complexity = classical communication complexity ???

• Wrong!

Why Study Q Communication Complexity?

- For its own sake
- To get lower bounds for other models
- It proves exponential quantum-classical separations in a realistic model, as opposed to
 - Black-box algorithms (not realistic)
 - Factoring (no proven separation because we can't prove factoring ∉ P)

Example 1: Distributed Deutsch-Jozsa

- Deutsch-Jozsa (black-box problem): Is $x_1 \dots x_n$ constant or balanced?
- Distributed Deutsch-Jozsa: Are x and y equal or at distance n/2?
- Efficient quantum protocol (BCW 98):

1. Alice sends
$$|\phi\rangle = \sum_{i=1}^{n} (-1)^{x_i} |i\rangle (\log n \text{ qubits})$$

- 2. Bob changes to $|\psi
 angle = \sum_i (-1)^{x_i + y_i} |i
 angle$
- 3. If x = y: $|\psi\rangle = \sum_{i} |i\rangle$ If $d(x, y) = \frac{n}{2}$: $|\psi\rangle$ orthogonal to $\sum_{i} |i\rangle$
- Classical protocols need almost n bits

Example 2: Disjointness

- Are $x \subseteq [n]$ and $y \subseteq [n]$ disjoint sets?
- Classical protocols need almost n bits, even if we allow some error probability
- We can use Grover's quantum search to search for an intersection (BCW 98):

 $O(\sqrt{n})$ steps, each step takes $O(\log n)$ qubits of communication $\Longrightarrow O(\sqrt{n} \log n)$ qubits

• Improved to $O(\sqrt{n}c^{\log^* n})$ (HW 02)

Example 3: Exponential separation (Raz 99)

- Alice gets v ∈ ℝⁿ, orthogonal spaces M₀, M₁ Bob gets a unitary U
 Promise: Uv is either in M₀ or in M₁
 Question: which one?
- 2 log *n* qubit protocol:
 - 1. Alice sends $|v\rangle$
 - 2. Bob sends back $U|v\rangle$
 - 3. Alice measures if $U|v\rangle \in M_0$ or M_1
- Classical protocols need $\frac{n^{1/4}}{\log n}$ bits (even if we allow error)

Example 4: Fingerprinting

- Quantum fingerprinting (BCWW 01): *n*-bit $x \Longrightarrow \log n$ -qubit $|\phi_x\rangle$, s.t. $\langle \phi_x | \phi_y \rangle$ small
- Simultaneous message passing model:

- Quantum protocol: Alice sends $|\phi_x\rangle$, Bob sends $|\phi_y\rangle$, referee tests equality
- Classical lower bound: \sqrt{n} bits (NS 96)

How to Get Almost-Orthogonal $|\phi_x angle$

• $p_x(z) = x_1 + x_2 z + \dots + x_n z^{n-1}$, $|F| = n/\varepsilon$

•
$$|\phi_x\rangle = \frac{1}{\sqrt{|F|}} \sum_{z \in F} |z\rangle |p_x(z)\rangle$$

•
$$|\langle \phi_x | \phi_y \rangle| \le \varepsilon$$
 if $x \ne y$

• $2\log(n/\varepsilon) = 2\log n + 2\log(1/\varepsilon)$ qubits

Lower Bounds: Inner Product (CDNT 98)

- Inner product problem: $f(x, y) = x \cdot y \mod 2$
- Suppose a protocol computes f: $|x\rangle|y\rangle\mapsto (-1)^{x\cdot y}\underbrace{|x\rangle}_{\text{Alice Bob}}\underbrace{|y\rangle}_{\text{Bob}}$
- Run the protocol on superposition of all y: $|x\rangle \sum_{y} |y\rangle \mapsto |x\rangle \sum_{y} (-1)^{x \cdot y} |y\rangle$
- Now a Hadamard transform gives Bob x!
- Then n bits have been communicated (Holevo)
 ⇒ protocol must have sent n qubits

Some General Lower Bounds

- 1. Protocols without error probability:
 - Consider communication matrix $M_f[x, y] = f(x, y)$, let $rank(M_f)$ be its rank. A protocol for f needs $\frac{\log rank(M_f)}{2}$ qubits
 - Equality, disjointness, and most other f: $rank(M_f) = 2^n \Rightarrow \text{ at least } n/2 \text{ qubits}$
- 2. With small error probability:
 - Need log of "approximate rank" of M_f
 - Disjointness needs at least \sqrt{n} qubits (Razborov 02)

Applications to Other Models

General idea: if communication complexity problem A can be embedded in problem B, then lower bounds on A imply lower bounds on B

For example, we can derive lower bounds on:

- Chip size
- Circuit size
- Automata size
- Data structure size

Interesting Open Problems

- Polynomial quantum-classical equivalence for all total functions?
- Exponential separation for 1-round protocols (with only one message)?
- Can EPR-pairs save communication?
 Superdense coding can save a factor of 2; public coin flips can save additive log n bits of communication. What else?