Polynomial-Time Quantum Algorithms for Pell's Equation and the Principal Ideal Problem

Pell's Equation

• Given a positive non-square integer d, find integer solutions x, y of

 $x^2 - dy^2 = 1.$

d = 5 $9^2 - 5 \cdot 4^2 = 1$

- One of the oldest studied problem in algorithmic number theory. • Reduction: Factoring \leq Pell's equation
- •Buchmann/Willights Tryptosystem based on Pell.
- Quantum Algorithms for: 1) Pell's Equation

2) Principal Ideal Problem

- Corollaries: break this cryptosystem, compute the class group
- The Hidden Subgroup Problem:
 - solvable when the group is abelian and finitely generated
 - for Pell's equation we extend the HSP to groups that are not finitely generated: the reals.

Classical Algorithm for Pell's Equation

Input: $\frac{d}{x^2 - dy^2} = 1$

as
$$\frac{\sqrt{x^2-1}}{y} = \sqrt{d}$$

For large x, $\sqrt{d} \approx \frac{x}{y}$

Algorithm: compute the continued fraction expansion of \sqrt{d}

$$\sqrt{d} \longrightarrow \frac{x_1}{y_1}, \frac{x_2}{y_2}, \dots, \frac{a}{b}, \dots$$

$$a^2 - db^2 = 1$$

$$\geq d^c \text{ steps, so exponential time.}$$

This algorithm dates back 1000 years.

Solutions of Pell's Equations (Existence)

$$x^2 - dy^2 = (x + y\sqrt{d})(x - y\sqrt{d})$$

A convenient way to write solutions:

 $a + b\sqrt{d}$ is a solution if $(a + b\sqrt{d})(a - b\sqrt{d}) = 1$

Lagrange (1768): There is a *fundamental solution* $a_0 + b_0\sqrt{d}$ and solutions of Pell's equation are given by

 $(a_0+b_0\sqrt{d})^n$ $n\in\mathbb{Z}_{>0}$

	Examples of	F F	und	am	enta	al	Solutio	ons	1.18
Inpu	t: d x^2	-	d	*	y^2	=	1		
	3 ²	-	8	*	12	=	1		
	19 ²	-	10	*	6 ²	=	1		
	102	-	11	*	32	=	1		
	72	-	12	*	2^{2}	=	1		
	649 ²	-	13	*	180 ²	=	1		
	15 ²	_	14	*	4 ²	=	1		
	4 ²	-	15	*	12	=	1		
	9801 ²	_	29	*	1820 ²	2		=	1
	1766319049 ²	-	61	*	22615	5398	30^{2}	=	1
	158070671986249 ²	_	109	*	1514()424	455100^2	=	1

Finding a solution $a + b\sqrt{d}$ is not in NP because the solutions are too big.

Solving Pell's Equation: the Regulator

Input: *d* Let $a_0 + b_0 \sqrt{d}$ be the fundamental solution. Define the *regulator* as

 $R = \ln(a_0 + b_0 \sqrt{d})$

Any solution of Pell's equation is represented as:

 $nR = \ln((a_0 + b_0\sqrt{d})^n) \qquad n \in \mathbb{Z}_{>0}$

Finding an integer multiple of R is in NP: Given $x \in \mathbb{R}$, there is a poly-time algorithm to test if e^x is a solution of Pell's equation.

Polynomial-time classical algorithms:

- Closest integer to $R \longrightarrow R$ to any precision.
- Can compute least significant digits of $a_0 + b_0 \sqrt{d}$ from *R*.

Background on Finding the Regulator R

Computational complexity:

- Factoring reduces to finding *R*.
- Classical running times: Factoring: $e^{n^{1/3}}$ Pell (computing R): $e^{n^{1/2}}$

 $n = \ln d$

- Complexity classes: Factoring \in NP I CoNP
 - Finding an <u>integer multiple</u> of *R* is in NP:
 - Finding R:
 - Assuming the GRH, is in NP.
 - Without assumptions: not known to be in NP.

 $R = \ln(a_0 + b_0 \sqrt{d})$

The Principal Ideal Problem

Given d, ideal $I \subset \mathbb{Z}[\sqrt{d}]$, is $I = \alpha \mathbb{Z}[\sqrt{d}]$? $\alpha \in \mathbb{Q}(\sqrt{d})$ Reductions: factoring \leq finding $R \leq$ principal ideal problem.

Running times (classical)

- Factoring: $e^{n^{1/3}}$ Pell and PIP: $e^{n^{1/2}}$

 $n = \ln d$

Cryptosystem based on principal ideal problem. (Buchmann, Williams 1989)

Quantum algorithm in polynomial (in $\ln d$) time.

- Breaks cryptosystem.
- Compute the class group of a real quadratic number field.

Towards a quantum algorithm: There is a function f on the reals s.t. f(x) = f(x + y) iff y = nR.

Quantum Preliminaries

$$\sum_{g \in G} \alpha_g |g\rangle \xrightarrow{\mathrm{F}_{\mathrm{G}}} \sum_{\chi \in \widehat{G}} \widehat{\alpha}_x |\chi\rangle$$

• 2 properties of F.T. over G: 1) subgroup H \longrightarrow perp group H^{\perp}

$$\sum_{\substack{h \in H \\ l}} |h\rangle \longrightarrow \sum_{\substack{\chi \in H^{\perp} \\ l}} |\chi\rangle$$
2) convolution \longrightarrow pt. wise multiplication
$$|g\rangle * \sum_{\substack{h \in H \\ l}} |h\rangle \longrightarrow \sum_{\substack{\chi}} \chi(g) |\chi\rangle \bullet \sum_{\substack{\chi \in H^{\perp} \\ l}} |\chi\rangle$$

The Hidden Subgroup Problem

Given $f: G \rightarrow$ Colors, constant and distinct on cosets of subgroup *H*. Find *H*.

Examples

- Factoring N: $G = \mathbb{Z}_M, M = \phi(N)$
- Discrete log: $G = \mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1}$

The Hidden Subgroup Problem Algorithm

Given $f: G \rightarrow$ Colors, constant and distinct on cosets of subgroup *H*.

Find *H*. Algorithm:

1) Fourier sample:

2) (Classically) reconstruct H from the sample.

Pell: Underlying Hidden Subgroup Problem?

Yes, but $G = \mathbb{R}$, and H is generated by an irrational number. $f: \mathbb{R} \to \text{Colors}$

1) Fourier sampling:

2) Classical reconstruction ?

in this talk, because Fourier sampling takes care of it.

Since Shor's Algorithms

• Factoring, Discrete log [Shor 1994]

Hidden Subgroup Problem

 Nonabelian Case [H., Russell, Ta-Shma 2000] [Grigni, Schulman, Vazirani, Vazirani 2001] [Magniez, Santha 2002]
 Solvable Groups and Generalizations [Watrous 2001]

[Ivanyos, Magniez, Santha 2001]

• Shifted Legendre Symbol Problem [van Dam, H., Ip 2001]

Quantum Algorithms

HSP Example: The Period Finding Problem

Period Finding: Integer Period r

Recall: we have a function f on the reals with period R. A) Exact case when r divides q.

Principal Ideals, Distances of Ideals

Input: *d* Define a set of ideals inside the ring $\mathbb{Z}[\sqrt{d}]$

 $I = a\mathbb{Z} + b\sqrt{d}\mathbb{Z} \subset \mathbb{Z}[\sqrt{d}] = \{a + b\sqrt{d} : a, b \text{ integer}\}$

 I_0

The ideals have real-valued distances δ in [0,R):

 $I = \alpha \mathbb{Z}[\sqrt{d}] \quad \delta(I) \approx \ln(\alpha) \mod R$

Notation: I_x is the ideal to the left of x.

Distances modulo *R* add approximately:

 $\delta(I_i \cdot I_j) = \delta(I_{i+j}) \pm \text{poly} \quad I_i^a \approx I_{ia}, \ a \in \mathbb{Z}$

Computation with Ideals

Input: *d* Define a set *S* of ideals inside the ring $\mathbb{Z}[\sqrt{d}]$ Facts about the computing with the ideals in S:

- 1) Exponential number of ideals
- 2) Represented by a pair of integers
- 3) Has a real-valued "distance"

4) Multiplication of ideals is group-like:

- distances add approximately $I_2 \cdot I_2 = I_4$ or I_5 .
- abelian, but not associative!

5) Given a real number *x*, can compute ideal closest to *x* in poly time

A Peridioc Function f on the Reals

Theorem: f is polynomial-time computable

6) Computing $R \leq$ computing the distance of an ideal.

(Specified as a pair of integers.)

Key Exchange [Buchmann, Williams '89]:

Finding the Distance of an Ideal (Sketch)

Discrete Log

Finite field:

 $\mathbb{Z}_{p}, \text{generator } g$ Given g^{T} , find r. $f(a, b) = g^{ar-b}$ $H = \{(a, ar)\}$ (mod p-1)

Quadratic number field: $\mathbb{Z}[\sqrt{d}]$ Given I_x , find x. $x \in \mathbb{R}$ $f(a,b) = I_{ax+b/N}$ $"H" = \{(a, \lfloor -Nax \rfloor)\}$ (mod R) M[NR]0 Computing f(a,b): 1) $I_x \mapsto I_x^a \approx I_{ax}$ *a* must be an integer $2)I_{ax} \cdot I_{b/N} \approx I_{ax+b/N}$ Quantum Algorithms: Mosca/Cheung, Watrous Given a set of generators g_1, \ldots, g_n , find a basis, etc.

Arbitrary group element: $g = g_1^{e_1} \cdots g_n^{e_n}, e_1, \dots, e_n \in \mathbb{Z}$ Algorithm:

1) Solve a hidden subgroup problem:

$$\sum_{e_1,\ldots,e_n} |e_1,\ldots,e_n\rangle \longrightarrow \sum_{e_1,\ldots,e_n} |e_1,\ldots,e_n,\phi_g\rangle$$

resulting in a matrix B for the set of group relations.

2) Classically compute the Smith normal form of B, which gives the basis for the group.

Main issue: if no unique representative for a group element $g = g_1^{e_1} \cdots g_n^{e_n}$ $g' = g_1^{e'_1} \cdots g_n^{e'_n}$ $\overline{g} = \overline{g}'$ in the group, but g, g' are different strings. Need $|\phi_g\rangle = |\phi_{g'}\rangle$

Decomposing Finite Abelian Groups

• Here: show how to create a superposition representing an element in Cl.

Algorithm: given an ideal *I*, compute $|I\rangle \rightarrow |\overline{I}\rangle \approx |I\rangle + |I'\rangle$

R

1) Superposition over distances from I

 $\sum_{j} \ket{j}$

2) Compute the ideal that is distance *j* from I $\sum_{j} |j, I_{j}\rangle$

3) Compute the distance of I_j from I $\sum_j |0, I_j\rangle$

Conclusions

- Polynomial-time algorithms for:
 - Pell's Equation
 - integer period finding is in NP
 - Hales: relative to an oracle, irrational period finding outside MA
 - Principal Ideal Problem
- Corollaries:
 - Break a cryptosystem based on ideals in number fields
 - Compute the class group
- Open Problems
 - General number fields:
 - Unit Group, Regulator
 - Class group
 - Shortest Lattice Vector
 - Other cryptosystems based on number fields