Polynomial-Time Quantum Algorithms for Pell's Equation and the Principal Ideal Problem

Pell's Equation

• Given a positive non-square integer d , find integer solutions x, y of

 $x^2 - dy^2 = 1$.

 $d=5$ $9^2 - 5 \cdot 4^2 = 1$

- One of the oldest studied problem in algorithmic number theory. • Reduction: Factoring \leq Pell's equation
- •Buchmann/Williams cryptosystem based on Pell. Running time:
- Quantum Algorithms for: 1) Pell's Equation

2) Principal Ideal Problem

- Corollaries: break this cryptosystem, compute the class group
- The Hidden Subgroup Problem:
	- solvable when the group is abelian and finitely generated
	- for Pell's equation we extend the HSP to groups that are not finitely generated: the reals.

Classical Algorithm for Pell's Equation

Rewrite Input: \boldsymbol{d}

$$
as \quad \frac{\sqrt{x^2-1}}{y} = \sqrt{d}
$$

For large x , $\sqrt{d} \approx \frac{x}{y}$

Algorithm: compute the continued fraction expansion of \sqrt{d}

$$
\sqrt{d} \longrightarrow \frac{x_1}{y_1}, \frac{x_2}{y_2}, \dots, \frac{a}{b}, \dots
$$

$$
\xrightarrow{a^2 - db^2 = 1}
$$

$$
\geq d^c
$$
 steps, so exponential time.

This algorithm dates back 1000 years.

Solutions of Pell's Equations (Existence)

$$
x^2 - dy^2 = (x + y\sqrt{d})(x - y\sqrt{d})
$$

A convenient way to write solutions:

is a solution if

Lagrange (1768): There is a *fundamental solution* $a_0 + b_0 \sqrt{d}$ and solutions of Pell's equation are given by

> $(a_0 + b_0\sqrt{d})^n$ $n\in\mathbb{Z}_{>0}$

Finding a solution $a + b\sqrt{d}$ is not in NP because the solutions are too big.

Solving Pell's Equation: the Regulator

Input: *d* Let $a_0 + b_0 \sqrt{d}$ be the fundamental solution. Define the *regulator* as

 $R = \ln(a_0 + b_0\sqrt{d})$

Any solution of Pell's equation is represented as:

 $nR = \ln((a_0 + b_0\sqrt{d})^n)$ $n \in \mathbb{Z}_{>0}$

Finding an integer multiple of *R* is in NP: Given $x \in \mathbb{R}$, there is a poly-time algorithm to test if e^{x} is a solution of Pell's equation.

Polynomial-time classical algorithms:

- Closest integer to $R \longrightarrow R$ to any precision.
- Can compute least significant digits of $a_0 + b_0 \sqrt{d}$ from R.

Background on Finding the Regulator *R*

Computational complexity:

- Factoring reduces to finding *R*.
- Classical running times: Factoring: Pell (computing *R*):

• Complexity classes:

- $Factoring \in NP~I~CoNP$
- Finding an integer multiple of *R* is in NP:
- - Finding R:
	- Assuming the GRH, is in NP.
	- Without assumptions: not known to be in NP.

 $R = \ln(a_0 + b_0\sqrt{d})$

 $n = \ln d$

The Principal Ideal Problem

Given d, ideal $I \subseteq \mathbb{Z}[\sqrt{d}]$, is $I = \alpha \mathbb{Z}[\sqrt{d}]$? Reductions: factoring \leq finding $R \leq$ principal ideal problem.

Running times (classical)

- Factoring:
- Pell and PIP:

 $n = \ln d$

Cryptosystem based on principal ideal problem. (Buchmann, Williams 1989)

Quantum algorithm in polynomial (in ln *d*) time.

- Breaks cryptosystem.
- Compute the class group of a real quadratic number field.

Towards a quantum algorithm: There is a function f on the reals s.t. $f(x) = f(x + y)$ iff $y = nR$.

Quantum Preliminaries

• State:
$$
\sum_{g \in G} \alpha_g |g\rangle \in \mathbb{C}^{|G|}
$$
 Measure: see g w.p. $|\alpha_g|^2$
Ex. $x \in \mathbb{Z}_2^n$, $x = \boxed{100110}$, $\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$

• Evolution: unitary op, e.g. Fourier transform over G

$$
\sum_{g \in G} \alpha_g |g\rangle \stackrel{\mathrm{F}_G}{\longrightarrow} \sum_{\chi \in \widehat{G}} \widehat{\alpha}_x |\chi\rangle
$$

1) subgroup H $\,\longrightarrow\,$ perp group H $^{\perp}$ • 2 properties of F.T. over G:

$$
\sum_{h \in H} |h\rangle \longrightarrow \sum_{\chi \in H^{\perp}} |\chi\rangle
$$

\n2) convolution \longrightarrow pt. wise multiplication
\n $|g\rangle * \sum_{h \in H} |h\rangle \longrightarrow \sum_{\chi} \chi(g)|\chi\rangle \bullet \sum_{\chi \in H^{\perp}} |\chi\rangle$

The Hidden Subgroup Problem

Given $f: G \to \text{Colors}$, constant and distinct on cosets of subgroup H. Find *H*.

Examples

- Factoring *N*: *G* =
- Discrete log: *G* =

The Hidden Subgroup Problem Algorithm

Given $f: G \to \text{Colors}$, constant and distinct on cosets of subgroup H.

Find *H*.Algorithm:

1) Fourier sample:

2) (Classically) reconstruct H from the sample.

Pell: Underlying Hidden Subgroup Problem?

Yes, but $G = \mathbb{R}$, and *H* is generated by an irrational number. $f : \mathbb{R} \to$ Colors

1) Fourier sampling:

 $|x\rangle$? 2) Classical reconstruction ? We will ignore the coset in this talk, because Fourier sampling takes care of it.

Since Shor's Algorithms

• Factoring, Discrete log [Shor 1994]

Hidden Subgroup Problem

• Nonabelian Case [H., Russell, Ta-Shma 2000] [Grigni, Schulman, Vazirani, Vazirani 2001] [Magniez, Santha 2002] • Solvable Groups and Generalizations [Watrous 2001] [Ivanyos, Magniez, Santha 2001] • Shifted Legendre Symbol Problem [van Dam, H., Ip 2001]

Quantum Algorithms

HSP Example: The Period Finding Problem

Period Finding: Integer Period *^r*

Recall: we have a function *f* on the reals with period *R*. A) Exact case when *^r* divides *q*.

Distances modulo *R* add approximately:

 $\delta(I_i \cdot I_j) = \delta(I_{i+j}) \pm \text{poly}$ $I_i^a \approx I_{ia}, a \in \mathbb{Z}$

Computation with Ideals

Input: *d* Define a set *S* of ideals inside the ring Facts about the computing with the ideals in S:

- 1) Exponential number of ideals
- 2) Represented by a pair of integers
- 3) Has a real-valued "distance"

4) Multiplication of ideals is group-like:

- distances add approximately
- abelian, but not associative!

5) Given a real number *^x*, can compute ideal closest to *x* in poly time

0*I*2*I*5*I*4*IR*0123450*I*2*I*5*I*4*I2R* [R] *f*: …

A Peridioc Function *f* on the Reals

Theorem: *f* is polynomial-time computable

6) Computing $R \leq$ computing the distance of an ideal.

(Specified as a pair of integers.)

Key Exchange [Buchmann, Williams '89]:

Finding the Distance of an Ideal (Sketch)

Discrete Log

 $M[NR]$

Finite field:

 \mathbb{Z}_p , generator g Given \boldsymbol{g}^r find *r*. $f(a,b) = g^{ar-b}$ $H = \{(a, ar)\}\$ $\boxed{\text{(mod } p-1)}$

 Quadratic number field: $\mathbb{Z}[\sqrt{d}]$ Given I_x , find *x*. $x \in \mathbb{R}$ $f(a,b) = I_{ax+b/N}$ " H " = {(a, [-Nax])} $\left(\begin{matrix} \text{mod } R \end{matrix}\right)$ \circ Computing *f* (*a,b*): $1) I_x \mapsto I_x^a \approx I_{ax}$ **a** must be an integer $2)I_{ax} \cdot I_{b/N} \approx I_{ax+b/N}$ Quantum Algorithms: Mosca/Cheung, Watrous Given a set of generators g_1, \ldots, g_n , find a basis, etc.

Algorithm: Arbitrary group element: $g = g_1^{e_1} \cdots g_n^{e_n}$, $e_1, \ldots, e_n \in \mathbb{Z}$

1) Solve a hidden subgroup problem:

 \boldsymbol{e}

$$
\sum_{1,\ldots,e_n} |e_1,\ldots,e_n\rangle \longrightarrow \sum_{e_1,\ldots,e_n} |e_1,\ldots,e_n,\phi_g\rangle
$$

resulting in a matrix B for the set of group relations.

2) Classically compute the Smith normal form of B, which gives the basis for the group.

Main issue: if no unique representative for a group element
 $g = g_1^{e_1} \cdots g_n^{e_n}$ $g' = g_1^{e_1} \cdots g_n^{e_n}$ $\bar{g} = \bar{g}'$ in the group, but g, g' are different strings. Need $|\phi_g\rangle = |\phi_{g'}\rangle$

Decomposing Finite Abelian Groups

• Here: show how to create a superposition representing an element in Cl.

Algorithm: given an ideal *I*, compute

I

R

I′

1) Superposition over *distances from I*

$\sum_i |j\rangle$

2) Compute the ideal that is distance *j* from *I* $\sum_{\boldsymbol{i}}|j,I_{\boldsymbol{j}}\rangle$

3) Compute the distance of *Ij* from *I* $\sum_i |0, I_i\rangle$

Conclusions

- Polynomial-time algorithms for:
	- Pell's Equation
		- integer period finding is in NP
		- Hales: relative to an oracle, irrational period finding outside MA
	- Principal Ideal Problem
- Corollaries:
	- Break a cryptosystem based on ideals in number fields
	- Compute the class group
- Open Problems
	- General number fields:
		- Unit Group, Regulator
		- Class group
	- Shortest Lattice Vector
	- Other cryptosystems based on number fields