Quantum Lower Bounds You probably Haven't Seen Before

(which doesn't imply that you don't know OF them)

Scott Aaronson, UC Berkeley 9/24/2002

BBBV'94: $\Omega(\sqrt{n})$ lower bound for searching a list of n elements (i.e. Grover's algorithm is optimal)

BBCMW'98: $\Omega(\sqrt{(k+1)(n-k)})$ bound for *any* symmetric Boolean function f(|X|) with f(k) \neq f(k+1)

Ambainis'00: $\Omega(\sqrt{n})$ bounds for evaluating an AND-OR tree and for finding the '1' in a permutation

A'02: $\Omega(n^{1/5})$ bound for the collision problem (deciding whether f:{1...n} \rightarrow {1...n} is 1-to-1 or 2-to-1) Shi'02: $\Omega(n^{1/3})$ bound for collision with large range, $\Omega(n^{2/3})$ for element distinctness

Other results, including what I'll talk about today

True

Henceforth polynomial arguments shall be used for highly symmetric problems and for zero-error bounds, and quantum arguments otherwise.

Whosoever disobeys, must post to quant-ph.

Talk Outline

- 1. Quantum Certificate Complexity
- 2. Recursive Fourier Sampling

3. Query Complexity & Quantum Gravity (special treat for Dave Bacon)

Quantum Certificate Complexity

Background

f: $\{0,1\}^n \rightarrow \{0,1\}$ is a total Boolean function

- D(f) (deterministic query complexity)
- $\geq R_0(f)$ (zero-error randomized)
- $\geq R_2(f)$ (bounded-error randomized)
- \geq Q₂(f) (bounded-error quantum)
- \leq Q₀(f) (zero-error quantum)
- $\leq Q_{E}(f)$ (exact quantum)

Example

 $f = OR(x_1, \mathbf{K}, x_n)$

D(OR) = n $R_0(OR) \approx n$ $R_2(OR) \approx \frac{1 - 2\varepsilon}{1 - \varepsilon} n$

 $Q_{E}(OR) = \Theta(n)$ $Q_{0}(OR) = \Theta(n)$ $Q_{2}(OR) = \Theta(\sqrt{n})$

Certificate Complexity $C(f) = \max_{X} C^{X}(f)$

 $C^{X}(f) = \min \# \text{ of queries needed to distinguish X}$ from every Y s.t. $f(Y) \neq f(X)$

Block Sensitivity $bs(f) = max_X bs^X(f)$

 $bs^{X}(f) = max \# of disjoint blocks B \subseteq \{x_1, \dots, x_n\} s.t.$ flipping B changes f(X)

Example: For f=MAJ(x_1, x_2, x_3, x_4, x_5), letting X=11110,

Randomized Certificate Complexity $RC(f) = max_X RC^X(f)$

 $RC^{X}(f) = \min \# of randomized queries needed to distinguish X from any Y s.t. <math>f(Y) \neq f(X)$ with $\frac{1}{2}$ prob.

Quantum Certificate Complexity QC(f)

Example: For f=MAJ(
$$x_1, ..., x_n$$
), letting X=00...0,
RC^X(MAJ) = 1

Different notions of nondeterministic quantum query complexity: Watrous 2000, de Wolf 2002

Adversary Method (special case)

Let D_0, D_1 be distributions over f⁻¹(0), f⁻¹(1) s.t. D_0 looks "locally similar" to every 1-input, and D_1 looks "locally similar" to every 0-input:

$$\forall X \in f^{-1}(0), i \in \{1, \dots, n\} \qquad \Pr_{Y \in D_1} \left[x_i \neq y_i \right] \leq \alpha$$
$$\forall Y \in f^{-1}(1), i \in \{1, \dots, n\} \qquad \Pr_{X \in D_0} \left[x_i \neq y_i \right] \leq \beta.$$

Then
$$Q_2(f) = \Omega\left(\frac{1}{\sqrt{\alpha\beta}}\right)$$

Claim:
$$QC(f) = \Theta(\sqrt{RC(f)})$$

- Any randomized certificate for input X can be made *nonadaptive*
- By minimax theorem, exists distribution over ${Y:f(Y) \neq f(X)}$ s.t. for all i, $x_i \neq y_i$ w.p. O(1/RC(f))
- Adversary method then yields $\Omega(\sqrt{RC(f)})$
- For upper bound, use "weighted Grover"

Example where $C(f) = \Theta(QC(f)^{2.205})$

New Quantum/Classical Relation

For total f,

$$R_0(f) = O(RC(f)ndeg(f)\log n)$$

$$= O(Q_2(f)^2 Q_0(f)\log n)$$
where ndeg(f) = min degree of poly p s.t.

$$p(X) \neq 0 \Leftrightarrow f(X) = 1$$

Previous: $D(f)=O(Q_2(f)^2Q_0(f)^2)$ (de Wolf), $D(f)=O(Q_2(f)^6)$ (Beals et al.) Idea (follows Buhrman-de Wolf):

Let p be s.t. $p(X) \neq 0 \Leftrightarrow f(X)=1$

 $x_1x_2 - x_2 + 2x_3$: x_1x_2 , $2x_3$ are "maxonomials"

Nisan-Smolensky: For every 0-input X and maxonomial M of p, X has a sensitive block whose variables are all in M

Consequence: Randomized 0-certificate must intersect each maxonomial w.p. $\geq \frac{1}{2}$

Randomized algorithm: Keep querying a randomized 0-certificate, until either one no longer exists or p=0

Lemma: O(ndeg(f) log n) iterations suffice w.h.p. Proof: Let S be current set of monomials, and

$$\omega(S) = \sum_{M \in S} \deg(M)!$$

Initially $\omega(S) \leq n^{ndeg(f)} ndeg(f)!$

We're done when $\omega(S)=0$

Claim: Each iteration decreases $\omega(S)$ by expected amount $\geq \omega(S)/4e$

Reason: \geq 1/e of $\omega(S)$ is concentrated on maxonomials, each of which decreases in degree w.p. $\geq \frac{1}{2}$

Recursive Fourier Sampling (quant-ph/0209060)

Fourier Sampling

Given A: $\{0,1\}^n \rightarrow \{0,1\}$

Promise: $A(x)=s \cdot x \pmod{2}$ for some s

Return: g(s), for some known g: $\{0,1\}^n \rightarrow \{0,1\}$ (possibly partial)

Classically: n queries needed

Quantumly: 2 queries

$$2^{-n/2} \sum_{x \in \{0,1\}^n} (-1)^{A(x)} |x\rangle \xrightarrow{H_{2^n}} |s\rangle$$

Fourier sampling composed log n times

Classically: n^{log n} queries

Quantumly: $2^{\log n} = n$ queries—or fewer?

Overview

- Bernstein-Vazirani 1993: RFS puts BQP ⊄ MA relative to oracle
- Candidate for BQP ⊄ PH
- Could it put (say) BQP ⊄ PH[polylog]?
- Is uncomputing necessary? Why?
- Goal: Show $Q_2(RFS) = \Omega(c^d)$ for c>1 d = tree depth
- **Trouble:** Suppose g(s) is a parity function Then $Q_2(RFS_g) = 1$

Plan of Attack

- We define a **nonparity coefficient** of the function g, $\mu(g) \in [0, \frac{3}{4}]$
- Measures how uncorrelated g is with parity of any subset of input bits
 Examples: μ(Parity)=0, μ(Mod 3)=¾–O(1/n)
- We then prove a lower bound:

$$Q_2(RFS_g) = \Omega\left(\left(\frac{1}{1-\mu(g)}\right)^{(\log n)/2}\right)$$

• If $\mu(g)$ is close to 0, this bound is useless. But we show that if $\mu(g)<0.146$ then g is a parity function

The Nonparity Coefficient µ(g)

Max μ^* s.t. for some distributions D_0 over $g^{-1}(0)$, D_1 over $g^{-1}(1)$,

for all $z \neq 0^n$, $t_0 \in g^{-1}(0)$, $t_1 \in g^{-1}(1)$,

 $\Pr_{s_0 \in D_0, s_1 \in D_1} \left[s_0 g_{\mathbb{Z}} \equiv t_1 g_{\mathbb{Z}} \left(\mod 2 \right) \lor s_1 g_{\mathbb{Z}} \equiv t_0 g_{\mathbb{Z}} \left(\mod 2 \right) \right] \ge \mu^*$

Theorem:

$$Q_2(RFS_g) = \Omega\left(\left(\frac{1}{1-\mu(g)}\right)^{(\log n)/2}\right)$$

Proof Idea: Uses Ambainis' "most general" bound

Let $(x,y) \in R$ if $x \in f^{-1}(0)$, $y \in f^{-1}(1)$ "differ minimally"

Weight inputs by D₀,D₁ from nonparity coefficient

Then for all i and $(x^*,y^*) \in \mathbb{R}$,

$$\Pr_{x \in D_0: (x, y^*) \in R} \left[x_i \neq y_i^* \right] \Pr_{y \in D_1: (x^*, y) \in R} \left[x_i^* \neq y_i \right] \leq (1 - \mu)^h$$

"Pseudoparity" Functions Don't Exist

Theorem: If
$$\mu(g) < \frac{2 - \sqrt{2}}{4} \approx 0.146$$

then $\mu(g)=0$ (i.e. g is a parity function)

So either

(1) the adversary method gives a good quantum lower bound, or

(2) there exists an efficient classical algorithm

In general, when can we do better for tree functions than by recursing on subtrees?

(Saks-Wigderson, Santha)

$$Q_2(f) = \Omega(\sqrt{n})$$

(Barnum-Saks: holds for any AND-OR tree)

Does every Boolean function have a unique tree?

Theorem (A'2000): Yes, modulo three "degeneracies" ...

Query Complexity & Quantum Gravity

The Holographic Principle ('t Hooft, Susskind, Bekenstein, Bousso...)

A = surface area of 3D region (in Planck areas, 7.1×10^{-70} m²)

N = # of bits it contains

Tight for black holes

The Query Complexity Holographic Principle

T = O(A)

A = surface area of 3D region

T = time needed to search it for a marked item (given finite speed of light)

Grover Search on a 2D Lattice

- Can do in O(n^{3/4}) time: searching a row classically takes \sqrt{n} time; combining the results using Grover takes n^{1/4}. \sqrt{n}
- In d dimensions, can do in O(n^{1/2+1/2d})
- Implies "query complexity holographic principle"—when d=3, $n^{1/2+1/6}=n^{2/3}$ is O(A), in the case where A is minimized (a sphere)
- **Conjecture:** n^{1/2+1/2d} is optimal. Would imply "holographic" bound is tight for spheres (such as black holes...)