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A History of Quantum Lower Bounds

QUANTUM
ARGUMENTS

BBBV'94: Q(vn) lower bound for searching a list of
n elements (i.e. Grover’s algorithm is optimal)



A History of Quantum Lower Bounds

QUANTUM POLYNOMIAL
ARGUMENTS ARGUMENTS

A 4

BBCMW’98: Q J(k+1)( ) bound for any
symmetric Boolean function f(|X|) with f(k)#f(k+1)




A History of Quantum Lower Bounds

QUANTUM
ARGUMENTS

POLYNOMIAL
ARGUMENTS

Ambainis’00: Q(¥n) bounds for evaluating an AND-
OR tree and for finding the ‘1’ in a permutation



A History of Quantum Lower Bounds

QUANTUM POLYNOMIAL
ARGUMENTS ARGUMENTS

A 4

A’'02: Q(n>) bound for the collision problem (deciding
whether f:{1...n}->{1...n} is 1-to-1 or 2-t0-1)

Shi'02: Q(n1/3% bound for collision with large range,
Q(n<3) for element distinctness



A History of Quantum Lower Bounds

QUANTUM
ARGUMENTS

POLYNOMIAL
ARGUMENTS

Other results, including what I'll talk about today



@

True

Henceforth polynomial
arguments shall be used for
highly symmetric problems

and for zero-error bounds, and
guantum arguments otherwise.

Whosoever disobeys, must
post to quant-ph.




Talk Outline

1. Quantum Certificate Complexity
2. Recursive Fourier Sampling

3. Query Complexity & Quantum Gravity

(special treat for Dave Bacon)



Quantum Certificate
Complexity



Background

f:{0,1}"-=>{0,1} is a total Boolean function

D(f) (deterministic query complexity)
> R,(f) (zero-error randomized)

> R,(f) (bounded-error randomized)

> Q,(f) (bounded-error quantum)

< Qq(f) (zero-error quantum)

IN

Q(f) (exact quantum)
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Certificate Complexity C(f) = max, C*(f)

CX(f) = min # of queries needed to distinguish X
from every Y s.t. f(Y)Z£f(X)

Block Sensitivity bs(f) = max, bs*(f)

bs*(f) = max # of disjoint blocks B[{x,...,x.} S.t.
flipping B changes f(X)

Example: For f=MAJ(X,,X,,X3,X,4,Xs), letting X=11110,

11110 11110

CX(MAJ)=3 bs¥(MAJ)=2



Randomized Certificate Complexity RC(f) = maxy, RC*(f)

RC*(f) = min # of randomized queries needed to
distinguish X from any Y s.t. f(Y)#f(X) with %2 prob.

Quantum Certificate Complexity QC(f)

Example: For f=MAJ(X4,...,X,), letting X=00...0,
RCX(MAJ) = 1

Different notions of nondeterministic quantum query
complexity: Watrous 2000, de Wolf 2002



Adversary Method

(special case)

Let D,y,D, be distributions over 1(0), f1(1) s.t.
D, looks “locally similar” to every 1-input, and
D, looks “locally similar” to every O-input:

O o) {1..n} Ylggl{tx | a
o fH )0 {1..1 XFD)EO%’* ] B



Claim: QC(f (\/RC )

 Any randomized certificate for input X can
be made nonadaptive

By minimax theorem, exists distribution over
{Y:A(Y)£H(X)} s.t. for all I, x 2y, w.p. O(1/RC(f))

» Adversary method then yields €2 (\/RC( f ))

e For upper bound, use “weighted Grover”



Example where C(f) = ©(QC(f)2%">)

K=X +L +X,
0ifks 12
g(k)=41if k=1314,15,16
0if k=2 17




New Quantum/Classical Relation

or total f,
] R,(f)=0O(RC(f)ndeg(f)logn)
:O(Qz(f)on(f)logn)

where ndeg(f) = min degree of poly p s.t.
P(X)20 = f(X)=1

Previous: D(f)=0(Q,()?Qy(f)?) (de Waolf),
D(f)=0(Q,(f)®) (Beals et al.)



ldea (follows Buhrman-de Wolf):
Let p be s.t. p(X)20 = f(X)=1
X X5 — X, + 2X50 X;X,, 2X5 are “maxonomials”

Nisan-Smolensky: For every O-input X and
maxonomial M of p, X has a sensitive block whose
variables are all in M

Conseguence: Randomized O-certificate must
Intersect each maxonomial w.p. = %2

Randomized algorithm: Keep querying a randomized
O-certificate, until either one no longer exists or p=0



Lemma: O(ndeg(f) log n) iterations suffice w.h.p.
Proof: Let S be current set of monomials, and
@w(S)= 2 deg(M)!
MOS
Initially «XS) < nndeal) ndeg(f)!
We're done when o(S)=0

Claim: Each iteration decreases w(S) by expected
amount = w(S)/4e

Reason: = 1/e of w(S) Is concentrated on maxonomials,
each of which decreases in degree w.p. = v



Recursive Fourier Sampling
(quant-ph/0209060)



Fourier Sampling
Given A:{0,1}"->{0,1}
Promise: A(x)=s-x(mod 2) for some s

Return: g(s), for some known g:{0,1}"-=>{0,1}
(possibly partial)

Classically: n queries needed
Quantumly: 2 queries

27 3 () g

x{0,3 "




Recursive Fourier Sampling (RFS)
g(s)

g(s)

Fourier sampling composed log n times
Classically: nlegn queries

Quantumly: 2l°gn = n queries—or fewer?



Overview

e Bernstein-Vazirani 1993: RFS puts BQP [ MA

relative to oracle
e Candidate for BQP U PH
e Could it put (say) BOP LI PH[poly

e IS uncomputing necessary? W

0g]?

ny?

e Goal: Show Q,(RFS) = Q(cY) for c>1

d = tree depth

* Trouble: Suppose g(s) is a parity function

Then Q,(RFS,) =1



Plan of Attack

* We define a nonparity coefficient of the function g,
p(g)0[0,%4]

 Measures how uncorrelated g is with parity of any
subset of input bits
Examples: p(Parity)=0, u(Mod 3)=%.—0(1/n)

* We then prove a lower bound:

Q,(RFS,) = Q[(l_ ;(g)j(uogn)/z]

e If u(g) Is close to 0, this bound is useless. But we
show that if 11(g)<0.146 then g is a parity function




The Nonparity Coefficient i(g)

Max p* s.t. for some distributions D, over g-1(0),
D, over gi(1),

for all zz0", t,C0g1(0), t,0g1(1),

s®=tg(mod2)Osg= t,gz(mod2) B u*

SODDO @ Dy



Theorem: Q(RFS)—Q[ 1 j('ogn)lz
2 u(g)

Proof ldea: Uses Ambainis’ (s)
“most general” bound J

Let (x,y)OR if xOF(0), % \\

yOft(1) “differ minimally” g(s)
Weight inputs by D,,D, from /N
nonparity coefficient .
Then for all i and (x*,y*)0R,
h
1y ] WX E Y s(1ma)

XDy : (x y*Jl R y Dy: (



“Pseudoparity” Functions Don’t Exist

= (0.146

2-J2
A

Theorem: If #(g)<

then u(g)=0 (i.e. g Is a parity function)

So either

(1)the adversary method gives a good quantum
lower bound, or

(2)there exists an efficient classical algorithm



In general, when can we do better for tree
functions than by recursing on subtrees?

OR OR
N )

AND AND

/ N\ [\ "t/

OR OR OR OR

| R,(f)= @(n0-753) .. X3/ \

(Saks-Wigderson, Santha)

Q)=o) (1))

(Barnum-Saks: holds for any AND-OR tree) (Diirr-Hayer)



Does every Boolean function have a
unique tree?

Theorem (A’2000): Yes, modulo three
“‘degeneracies’ ...

OR AND XOR

\ \ \

AND XOR

SN/ /N7 /N



Query Complexity &
Quantum Gravity



The Holographic Principle

(‘t Hooft, Susskind, Bekenstein, Bousso...)

A4
41n 2

A = surface area of 3D region
(in Planck areas, 7.1x10-70 m?)

N <

N = # of bits it contains

Tight for black holes



The Query Complexity Holographic Principle

T=0(4)

A = surface area of 3D region

T = time needed to search it for
a marked item (given finite
speed of light)



Grover Search on a 2D Lattice

1" Vn
Quantum

computer

©
©
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vn @ Marked item




» Can do in O(n%4) time: searching a row
classically takes vn time; combining the results
using Grover takes nt4-/n

* In d dimensions, can do in O(nl/2+1/2d)

 Implies “query complexity holographic
principle”—when d=3, n1/2+1/6=n2/3 j5s Q(A), in the
case where A Is minimized (a sphere)

e Conjecture: nl/2+l2d jg gptimal. Would imply
*holographic” bound is tight for spheres (such
as black holes...)



