Quantum Computation and Lattice Problems

Oded Regev Institute for Advanced Study

Lattices

- Basis: v₁,...,v_n vectors in Rⁿ
- The lattice is

 a₁v₁+...+a_nv_n for all

 integer a₁,...,a_n.
- What is the shortest vector ?

Lattices – not so easy

f(n)-unique-SVP (shortest vector problem)

n(3+1

- Promise: the shortest vector is shorter by a factor of f(n) than other non-parallel vectors
- Algorithm for (1+ε)ⁿ-unique SVP [Schnorr87]
- n^{1/4}-unique-SVP not NP-hard [Cai,GoldreichGoldwasser98]

F(n)

Lattices and Cryptography

- Standard cryptography
 - Based on 'hardness' of factoring, discrete log, or principal ideal problem
 - Solvable by quantum algorithms
- Lattice based cryptography [AjtaiDwork97]
 - Based on hardness of unique-SVP
 - Worst case hardness
 - Still not solvable by quantum algorithms

Results (1)

- Can we solve the unique-SVP with quantum algorithms ?
- Yes, but under the assumption that a solution exists to the dihedral HSP

Hidden Subgroup Problem

- Major problem in quantum computation
- Given a function which is constant and distinct on cosets of H≤G, find H

So, can we solve the dihedral HSP?

Dihedral HSP

- Ettinger and Høyer show how to solve dihedral HSP with only a polynomial number of measurements
- However, the running time of the algorithm is exponential...

Results (2)

• We solve the dihedral HSP with an average case subset-sum algorithm

Finding the Shortest Vector using Dihedral Cosets

Dihedral Coset Problem

- Given a black box that outputs a superposition of two numbers in {0,...,N-1} whose difference d modulo N is fixed, find d.
- Naïve solution: measure the result. The state collapses and we have no information about d!
- No known solution

Two Point Problem

Given a black box that outputs two vectors in Zⁿ whose vector difference d is fixed, find d.

 e.g. |4,9,1⟩+|7,9,2⟩
 |1,0,6⟩+|4,0,7⟩

 Can be solved using a Dihedral Coset Algorithm:
 (1,3),(2,5) → 13,25 → 25-13=12 → (1,2)
 (4,0),(5,2) → 40,52 → 52-40=12 → (1,2)

From 2PP to Lattices

- Assume we are given an algorithm for the two point problem
- We show a solution to the n³log^{0.5}n-unique SVP by building the black box

I dea: catch two points in a box !

First Attempt

- Create a superposition of 'all' the lattice
- Partition the space into cubes and compute the location of each point
- Measure the result

First Attempt Not necessarily 2 points...

Spacing out the Lattice

 Shortest vector is an integer combination of the basis vectors:
 7100v + 0245v + 1725v + 2100v

 $7190v_1 + 9245v_2 + 1725v_3 + 2108v_4$

- Not all coefficients divisible by the prime p
- We can assume that we know which coefficient it is and its value modulo p which is denoted by m
- For example, p=5,a₄,m=3

Spacing out the Lattice

p=5

m=3

 \sim =7190v₁+9245v₂+1725v₃+2108v₄

2

Spacing out the Lattice

22

Partitioning into Cubes

- Assume we have an estimate s on the length of the shortest vector
- Partition the space into cubes of side length ~ (n^{2.5}log^{1/2}n)s

The Black Box

- Create the set of all the lattice points whose coefficient modulo p is 0 or m (e.g., 0,3)
- Compute the location of each point in a random rotation & translation of the grid of side length (n^{2.5}log^{0.5}n)s
- Measure the result

Analysis

- The initial state is $|p_1\rangle + |p_2\rangle + |p_3\rangle + |p_4\rangle + |p_5\rangle + |p_6\rangle$
- After computing the locations: $|p_1,c_2\rangle + |p_2,c_1\rangle + |p_3,c_1\rangle + |p_4,c_3\rangle + |p_5,c_2\rangle + |p_6,c_3\rangle$
- After measuring the second register, say we got c_2 : $|p_1,c_2\rangle + |p_5,c_2\rangle$
- The first register contains two points whose difference is fixed and equals to the shortest vector.
- Given this black box, the two point problem finds the shortest vector.

Analysis – error prob.

- Not more than two points
 - Because lattice is spaced out, and
 - Because n³log^{1/2}n-unique-SVP and cube side length is n^{2.5}log^{1/2}n
- Prob. of one point is:
 - The projection of the shortest vector on each of the grid's axes is at most (n^{-1/2}log^{1/2}n)s
 - Side length is (n^{2.5}log^{1/2}n)s
 - Hence success probability is at least:

- Good enough because the space is 2[^](n²)

 $\left(1-\frac{1}{n^3}\right)^n \approx 1-\frac{1}{n^2}$

Solving Dihedral HSP using Subset Sum

27

Subset Sum Problem

- Given integers a₁,...,a_r,t,N find a subset of {a₁,...,a_r} that sums to t modulo N.
- We assume that there exists a routine S that solves a non-negligible part of the inputs
- We show how to solve the dihedral coset problem

Dihedral Coset Problem

- Given a black-box that outputs states of the form |0,x>+|1,x+d> (both in {0,...,N-1}) with fixed d, find d.
- We can add the first qubit in the lattice construction

Phase estimation

- By using the Hadamard transform we can estimate the phase difference between two known basis states:
- Given the state $e^{2\pi i\alpha}|a\rangle + e^{2\pi i\beta}|b\rangle \leftarrow$ where a and b are known, estimate β - α

Finding d

- We describe a routine that estimates d
- Later, we will find d exactly by repeating the estimation process with 2d, 4d...

Black Box + Fourier

- Calling the black box returns the state $|0,x\rangle$ + $|1,x+d\rangle$ on 1+logN qubits
- Apply the Fourier transform to the last logN qubits and the state is

$$\sum_{j=0}^{N-1} e^{2\pi i (jx/N)} |0, j\rangle + \sum_{j=0}^{N-1} e^{2\pi i (j(x+d)/N)} |1, j\rangle =$$

$$\sum_{j=0}^{N-1} e^{2\pi i (jx/N)} (|0\rangle + e^{2\pi i (jd/N)} |1\rangle) |j\rangle$$

Black Box + Fourier

- Measure the second register
- We get a uniform value q between 0 and N-1 and the state collapses to: $e^{2\pi i (qx/N)} (|0\rangle + e^{2\pi i (qd/N)} |1\rangle) |q\rangle$

or equivalently,

 $| 0 \rangle + e^{2\pi i (qd/N)} | 1 \rangle$

Black Box + Fourier

Phase diff: 0 d/N 2d/N 3d/N 4d/N 5d/N ... (N-1)d/N

- So, by using the Fourier transform, we can create a phase difference of 2π(q·d/N) for a *random* q in {0,...,N-1}.
- It would be nice if q=1...
- We repeat the process r=logN+c times and get a sequence q₁,...,q_r.

• The state is,

$$\bigotimes_{j=1}^{r} | 0 \rangle + e^{2\pi i (q_j d/N)} | 1 \rangle$$

- This is a superposition of 2^r basis states
- Think of each basis state as a subset of $\{q_1,...,q_r\}.$
- The phase of each subset is $2\pi(\Sigma q \cdot d/N)$
- So, instead of q=1, we'll try to find pairs whose phase is q and q+1

Routine for estimating d Assume r=4, N=10 and we got the random sequence $q_1 = 3, q_2 = 4, q_3 = 8, q_4 = 9$ $(|0\rangle + e^{2\pi i(3d/10)} |1\rangle)(|0\rangle + e^{2\pi i(4d/10)} |1\rangle)(|0\rangle + e^{2\pi i(8d/10)} |1\rangle)(|0\rangle + e^{2\pi i(8d/10)} |1\rangle)(|0\rangle + e^{2\pi i(9d/10)} |1\rangle)(|0\rangle + e^{2\pi i(9d/1$ $|1\rangle$) {3,4,9},Σ=6 {3,8,9},Σ=0 {3,4,8,9},Σ=4 {3,4,8},Σ=5 $\{4,8,9\},\Sigma=1$ $\{3,4\},\overline{\Sigma}=7$ {3,9},Σ=2 {8,9},Σ=7 $\{3,8\},\Sigma=1$ $\{4,9\},\Sigma=3$ {4,8},Σ=2 {3},Σ=3 $\{4\},\Sigma=4$ $\{8\}, \Sigma = 8$ **{9},Σ=9** {},Σ=0

- We compute a color to each state
- A state is colored black if it is not returned by S

 $\{3,4,8,9\}, \Sigma=4 \quad \{3,4,8\}, \Sigma=5 \quad \{3,4,9\}, \Sigma=6 \quad \{3,8,9\}, \Sigma=0$

- The neighbor of i is i+1 if even and i-1 if odd
- A state is colored black if S doesn't answer about his neighbor

{3,4,8,9},Σ=4	{3,4,8},Σ=5	{3,4,9},Σ=6	{3,8,9},Σ=0
Ο	●	●	●
{4,8,9},Σ=1 ●	{3,4},Σ=7 ●	{3,9},Σ=2 ●	{8,9},Σ=7
{3,8},Σ=1	{4,9},Σ=3	{4,8},Σ=2	{3},Σ=3
●	●	●	●
{4},Σ=4 ●	{8},Σ=8 ●	{9},Σ=9 ●	

- Each remaining state is colored according to $\lfloor \Sigma/2 \rfloor$

{3,4,8,9},Σ=4 ●	{3,4,8},Σ=5	{3,4,9},Σ=6 ●	{3,8,9},Σ=0 ●
{4,8,9},Σ=1	{3,4},Σ=7	{3,9},Σ=2	{8,9},Σ=7
●	●	●	●
{3,8},Σ=1	{4,9},Σ=3	{4,8},Σ=2	{3},Σ=3
●	●	●	●
{4},Σ=4 ○	{8},Σ=8	{9},Σ=9 ●	

- We measure one of the colors
- We estimate the phase difference between the two known states

{3,4,8},Σ=5

{4},Σ=4 ○

Finding d exactly

- The previous routine estimates d/N
- We repeat the routine but instead of pairing numbers with difference 1 we pair numbers with difference 2
- Then we get an estimate on 2d/N
- We continue with 4d/N, 8d/N,... until we find d exactly

Conclusion

- We described the first lattice-quantum connection
- We solved the shortest vector problem on n^{2.5}-unique lattices with the assumption that there exists a solution to the dihedral hidden subgroup problem
- We solved the dihedral hidden subgroup problem with the assumption that there exists an average case solution to the subset sum problem