Quantum Computation andLattice Problems

Oded Regev Institute for Advanced Study

Lattices

- \bullet Basis: $V_1,...,V_n$ vectors in Rn
- The lattice is a₁v₁+…+a_nv_n for all integer a₁,...,a_n.
- What is the shortest vector ?

Lattices – not so easy

f(n)-unique-SVP (shortest vector problem)

ε) n

∈

P

DOODOO

- Promise: the shortest vector is shorter by a factor of $f(n)$ than other non-parallel vectors
- \bullet Algorithm for (1+ε)ⁿ-unique SVP [Schnorr87]
- \bullet ⁿ1/4-unique-SVP not NP-hard [Cai,GoldreichGoldwasser98]

1 $n^{1/4}$ (1+

<u>?</u>

ⁿ1/4

1

Lattices and Cryptography

- \bullet Standard cryptography
	- – Based on 'hardness' of factoring, discrete log, or principal ideal problem
	- Solvable by quantum algorithms
- \bigcirc Lattice based cryptography [AjtaiDwork97]
	- $\mathcal{L}_{\mathcal{A}}$ Based on hardness of unique-SVP
	- Worst case hardness
	- Still not solvable by quantum algorithms

Results (1)

- \bullet Can we solve the unique-SVP with quantum algorithms ?
- \bullet Yes, but under the assumption that a solution exists to the dihedral HSP

Hidden Subgroup Problem

- •Major problem in quantum computation
- Given a function which is constant and distinct on cosets of H≤G, find ⊦

So, can we solve the dihedral HSP?

Dihedral HSP

- \bullet Ettinger and Høyer show how to solve dihedral HSP with only a polynomial number of measurements
- \bullet However, the running time of the algorithm is exponential …

Results (2)

 \bullet We solve the dihedral HSP with an average case subset-sum algorithm

Finding the Shortest Vector using Dihedral Dihedral Cosets

Dihedral Coset Problem

- \bigcirc Given a black box that outputs a superposition of two numbers in {0,…,N-1} whose difference d modulo N is fixed, find d.
- Naïve solution: measure the result. The state collapses and we have no information about d!
- No known solution

Two Point Problem Two Point Problem

 \bullet Given a black box that outputs two vectors in Zⁿ whose vector difference d is fixed, find d. $\mathsf{e.g.} \quad \mathsf{ \ket{4,9,1}} \mathsf{ \ket{7,9,2}}$ $|1$,0,6 \rangle + $|$ 4,0,7 \rangle

 \bullet Can be solved using a Dihedral Coset Algorithm: $(1,3)$, $(2,5)$ \rightarrow 13,25 \rightarrow 25-13=12 \rightarrow $(1,2)$ $(4,0),(5,2) \rightarrow 40,52 \rightarrow 52$ -40=12 \rightarrow $(1,2)$

From 2PP to Lattices

- \bullet Assume we are given an algorithm for the two point problem
- We show a solution to the n^3 log $^{0.5}$ n-unique SVP by building the black box

 \bullet I dea: catch two points in a box !

First Attempt

- \bigcirc Create a superposition of 'all' the lattice
- \bullet Partition the space into cubes and compute the location of each point
- Measure the result

First Attempt \bullet Not necessarily 2 points…

Spacing out the Lattice

 \bullet Shortest vector is an integer combination of the basis vectors:

7190v₁+9245v₂+1725v₃+2108v₄

- \bigcirc Not all coefficients divisible by the prime p
- We can assume that we know which coefficient it is and its value modulo p which is denoted by m
- $\mathbf C$ For example, $p=5, a₄, m=3$

Spacing out the Lattice

 $p=5$

 $m=3$

=7190v₁+9245v₂+1725v₃+2108v₄

21

Spacing out the Lattice

Partitioning into Cubes

- Assume we have an estimate s on the length of the shortest vector
- \bullet Partition the space into cubes of side length ~ $(n^{2.5}$ log^{1/2}n)s

The Black Box

- Create the set of all the lattice points whose coefficient modulo p is 0 or m (e.g., 0,3)
- \bullet Compute the location of each point in a random rotation & translation of the grid of side length $(n^{2.5}$ log^{0.5}n)s
- Measure the result

Analysis

- The initial state is $|p_1\rangle + |p_2\rangle + |p_3\rangle + |p_4\rangle + |p_5\rangle + |p_6\rangle$
- After computing the locations: $|p_1, c_2\rangle + |p_2, c_1\rangle + |p_3, c_1\rangle + |p_4, c_3\rangle + |p_5, c_2\rangle + |p_6, c_3\rangle$
- After measuring the second register, say we got \textsf{c}_2 : $|p_1, c_2\rangle + |p_5, c_2\rangle$
- The first register contains two points whose difference is fixed and equals to the shortest vector.
- Given this black box, the two point problem finds the shortest vector.

Analysis **Analysis** - error prob.

- \bigcirc Not more than two points
	- Because lattice is spaced out, and
	- Because <code>n³log</code>^{1/2}n-unique-SVP and cube side length is n^{2.5}log^{1/2}n
- \bullet Prob. of one point is:
	- The projection of the shortest vector on each of the grid's axes is at most $(n^{-1/2} \log^{1/2} n)s$

3 2

n

 $1 \lambda^n - 1$ 1

26

- Side length is (n^{2.5}log^{1/2}n)s
- Hence success probability is at least:

n

Good enough because the space is 2[^](n²)

— — — →) ≈

n

Solving Dihedral HSP using Subset Sum

27

Subset Sum Problem

- \bullet Given integers $a_1,...,a_r$, t, N find a subset of $\{a^{}_1,...,a^{}_r\}$ that sums to t modulo N.
- We assume that there exists a routine S that solves a non-negligible part of the inputs
- We show how to solve the dihedral coset problem

Dihedral Coset Problem

- Given a black-box that outputs states of the Given a black-box that outputs states of the
form $|0,\mathsf{x}\rangle$ + $|1,\mathsf{x}{\tt +d}\rangle$ (both in {0,...,N-1}) with fixed d**, find d**.
- \bigcirc We can add the first qubit in the lattice construction

Phase estimation

- \bullet By using the Hadamard transform we can estimate the phase difference between two *known* basis states:
- Given the state e 2 π iα $|a\rangle$ + e^2 π i $\beta\, \vert \,$ b \rangle \leftarrow where a and b are known, estimate β α

Finding d

- We describe a routine that estimates d
- \bullet Later, we will find d exactly by repeating the estimation process with 2d, 4d…

Black Box + Fourier

- \bullet Calling the black box returns the state
|0,x>+|1,x+d> on 1+logN qubits
- \bullet Apply the Fourier transform to the last logN qubits and the state is

$$
\sum_{j=0}^{N-1} e^{2\pi i (jx/N)} |0, j\rangle + \sum_{j=0}^{N-1} e^{2\pi i (j(x+d)/N)} |1, j\rangle =
$$

$$
\sum_{j=0} e^{2\pi i (jx/N)} (|0\rangle + e^{2\pi i (j d/N)} |1\rangle) |j\rangle
$$

Black Box + Fourier

- \bullet Measure the second register
- \bigcirc We get a uniform value q between 0 and N-1 and the state collapses to: $e^{2\pi i (qx/N)}(|0\rangle + e^{2\pi i (qd/N)}|1\rangle)|q\rangle$

or equivalently,

 $|0\rangle+e^{2\pi i (qd/N)}|1\rangle$ *e* π

Black Box + Fourier

0 1 2 3 4 5 N-1 \bigcirc $|\mathsf{x}\rangle$ $\bigodot \bigodot \bigodot \bigodot \bigodot$ \vert X + d \rangle Phase diff: 0 d/N 2d/N 3d/N 4d/N 5d/N ... (N-1)d/N

- \bullet So, by using the Fourier transform, we can create a phase difference of 2π (q·d/N) for a random q in $\{O,...,N-1\}$.
- \bullet I t would be nice if q=1...
- \bullet We repeat the process r=logN+c times and get a sequence ${\mathsf q}_1,...,{\mathsf q}_{\mathsf r}$.

 \bullet The state is,

$$
\otimes_{j=1}^r |0\rangle + e^{2\pi i (q_j d/N)} |1\rangle
$$

- \bullet This is a superposition of 2r basis states
- Think of each basis state as a subset of ${q_1,...,q_r}.$
- \bullet The phase of each subset is $2\pi(\Sigma q \cdot d/N)$
- \bullet So, instead of q=1, we'll try to find pairs whose phase is q and q+1

Routine for estimating d Assume r=4,N=10 and we got the random \bullet sequence $q_1=3$, $q_2=4$, $q_3=8$, $q_4=9$ $\langle (0, 0) + e^{2\pi i (3d/10)} | 1 \rangle \langle (0, 0) + e^{2\pi i (4d/10)} | 1 \rangle \langle (0, 0) + e^{2\pi i (8d/10)} | 1 \rangle \langle (0, 0) + e^{2\pi i (9d/10)} | 1 \rangle \rangle$ $\pi(3d/10)$ | 1 \ \ $\pi(10)$ | $\pi(2\pi(4d/10)$ | 1 \ \ $\pi(10)$ | $\pi(8d/10)$ | 1 \ \ $\pi(10)$ | $\pi(2\pi)$ $\{3, 4, 8, 9\}$, Σ =4 $\{3, 4, 8\}$, Σ =5 {3,4,9}, Σ=66 ${3,8,9}, \Sigma = 0$ $\{4,8,9\}$, Σ =1 $\{3,4\}$, Σ =7 {3,9}, Σ=22 $\{8,9\}$, $\Sigma = 7$ \bigcap ${3,8}, \Sigma = 1$ ${4,9}, \Sigma = 3$ 3 ${4,8},\Sigma = 2$ 2 $\{3\}$, $\Sigma = 3$ {4}, Σ=4 {8}, Σ=8 {9}, Σ=9 {}, Σ=0 S: 0 \rightarrow {}, 1 \rightarrow {4,8,9}, 2 \rightarrow X, 3 \rightarrow {3}, 4 \rightarrow {4}, 1

5→{3,4,8}, 6→{3,4,9}, 7→X, 8→{8}, 9→{9}

- \bigcirc We compute a color to each state
- A state is colored black if it is not returned by S

 $\{3,4,8,9\}$, Σ =4 $\{3,4,8\}$, Σ =5 $\{3,4,9\}$, Σ =6 $\{3,8,9\}$, Σ =0 \bigcirc $\{4,8,9\}, \Sigma = 1$ $\{3,4\}, \Sigma = 7$ $\{3,9\}, \Sigma = 2$ $\{8,9\}, \Sigma = 7$ \bigcirc \bigcirc \bigcirc $\{3,8\}, \Sigma = 1$ {4,9}, $\Sigma = 3$ {4,8}, $\Sigma = 2$ {3}, $\Sigma = 3$ \bigcirc \bigcirc \bigcirc $\{4\}, \Sigma = 4$ {8}, $\Sigma = 8$ {9}, $\Sigma = 9$ {}, $\Sigma = 0$

S: $0\rightarrow \{\}$, $1\rightarrow \{4,8,9\}$, $2\rightarrow X$, $3\rightarrow \{3\}$, $4\rightarrow \{4\}$, $5\rightarrow$ {3,4,8}, 6 \rightarrow {3,4,9}, 7 \rightarrow X, 8 \rightarrow {8}, 9 \rightarrow {9}

- The neighbor of i is i +1 if even and i -1 if odd
- A state is colored black if S doesn't answer about his neighbor

S: $0\rightarrow \{\}, 1\rightarrow \{4,8,9\}, 2\rightarrow X, 3\rightarrow \{3\}, 4\rightarrow \{4\},$ $5\rightarrow$ {3,4,8}, 6 \rightarrow {3,4,9}, 7 \rightarrow X, 8 \rightarrow {8}, 9 \rightarrow {9}

 \bullet Each remaining state is colored
according to $[\Sigma/2]$

> $\{3,4,8,9\}$, $\Sigma = 4$ $\{3,4,8\}$, $\Sigma = 5$ $\{3,4,9\}$, $\Sigma = 6$ $\{3,8,9\}$, $\Sigma = 0$ \bigcirc $\{4,8,9\}, \Sigma=1$ $\{3,4\}, \Sigma=7$ $\{3,9\}, \Sigma=2$ $\{8,9\}, \Sigma=7$ \bigcirc \bigcirc \bigcirc ${3,8}, \Sigma = 1$ {4,9}, $\Sigma = 3$ {4,8}, $\Sigma = 2$ {3}, $\Sigma = 3$ \bigcirc \bigcirc \bigcirc \bigcirc $\{4\}, \Sigma = 4$ {8}, $\Sigma = 8$ {9}, $\Sigma = 9$ {}, $\Sigma = 0$ $(\)$

S: $0\rightarrow \{\}$, $1\rightarrow \{4,8,9\}$, $2\rightarrow X$, $3\rightarrow \{3\}$, $4\rightarrow \{4\}$, $5\rightarrow$ {3,4,8}, 6 \rightarrow {3,4,9}, 7 \rightarrow X, 8 \rightarrow {8}, 9 \rightarrow {9}

- We measure one of the colors
- \bullet We estimate the phase difference between the two known states

{3,4,8},Σ=5

 ${4}$, $\Sigma = 4$

S: $0\rightarrow$ {}, 1 \rightarrow {4,8,9}, 2 \rightarrow X, 3 \rightarrow {3}, 4 \rightarrow {4}, $5\rightarrow$ {3,4,8}, 6 \rightarrow {3,4,9}, 7 \rightarrow X, 8 \rightarrow {8}, 9 \rightarrow {9}

Finding d exactly

- \bullet The previous routine estimates d/N
- \bigcirc We repeat the routine but instead of pairing numbers with difference 1 we pair numbers with difference 2
- \bullet Then we get an estimate on 2d/N
- \bullet We continue with 4d/N, 8d/N,… until we find d exactly

Conclusion

- \bullet We described the first lattice-quantum **connection**
- \bullet We solved the shortest vector problem on ⁿ2.5-unique lattices with the assumption that there exists a solution to the dihedral hidden subgroup problem
- \bullet We solved the dihedral hidden subgroup problem with the assumption that there exists an average case solution to the subset sum problem