Quantum Computing and Locally Decodable Codes

Iordanis Kerenidis (UC Berkeley)

Ronald de Wolf (CWI Amsterdam)

Error-Correcting Codes

- Encoding $C: \{0,1\}^n \rightarrow \{0,1\}^m$, $m \geq n$
- Even if C(x) is corrupted in δm positions, we can still recover the whole x
- We can achieve this with m = O(n), linear-time encoding and decoding. O(1) time per bit!
- Disadvantage: if you only want one bit x_i , you still need to decode the whole C(x)

Locally Decodable Codes

- ullet Recover x_i with high probability, looking only at a few positions in the codeword
- $C: \{0,1\}^n \to \{0,1\}^m$ is a (q,δ,ε) -locally decodable code (LDC) if there exists a randomized decoder A such that for every $y \in \{0,1\}^m$ and $i \in [n]$
 - 1. $A^y(i)$ makes $\leq q$ queries to bits of y
 - 2. $d(y, C(x)) \le \delta m \Rightarrow \Pr[A^y(i) = x_i] \ge 1/2 + \varepsilon$
- LQDCs: classical code, quantum queries

Example: Hadamard Code

- Define $C(x)_j = j \cdot x \mod 2$ for all $j \in \{0, 1\}^n$, so $m = 2^n$
- Example: C(11) = 0110
- ullet Decode: pick random $j \in \{0,1\}^n$, query j and $j \oplus e_i$, output $y_j \oplus y_{j \oplus e_i}$
- Works perfectly if y = C(x) (no noise)
- δ -corruption hits $C(x)_j$ or $C(x)_{j \oplus e_i}$ with probability $\leq 2\delta$, so

$$\Pr[A^y(i) = x_i] > 1 - 2\delta$$

What's Known About LDCs

Main question: tradeoff between q and m

Upper bounds:

$$q=m$$
 \Rightarrow $m \leq O(n)$ (standard ECC) $q=(\log n)^2$ \Rightarrow $m \leq poly(n)$ (Babai et al) constant q \Rightarrow $m \leq 2^{n^{c(q)}}$ (from PIR)

• Lower bounds:

Katz-Trevisan 99:

$$q=1$$
 \Rightarrow LDCs don't exist $q>1$ \Rightarrow $m \geq n^{1+1/(q-1)}$ GKST 02: $q=2$, linear p p $m > 2^{cn}, c = \delta \varepsilon/8$

• Our result:

 $q=2 \Rightarrow m>2^{cn}$ also for non-linear LDCs

Proof Uses Quantum!

• Step 1:

2-query LDCs can be decoded with 1 quantum query: $(2,\delta,\varepsilon)\text{-LDC is }(1,\delta,4\varepsilon/7)\text{-LQDC}$

• Step 2:

 $(1,\delta,\varepsilon)$ -LQDC needs length $m\geq 2^{cn}$, for $c=1-H(1/2+\delta\varepsilon/4)\approx (\delta\varepsilon)^2$

Step 1: From 2-LDC to 1-LQDC

Lemma: Any $f: \{0,1\}^2 \rightarrow \{0,1\}$ can be computed with 1 quantum query, with success probability exactly 11/14

• Query
$$\frac{1}{\sqrt{3}}(|0\rangle + |1\rangle + |2\rangle)$$

$$\Rightarrow |\phi\rangle = \frac{1}{\sqrt{3}}(|0\rangle + (-1)^{a_1}|1\rangle + (-1)^{a_2}|2\rangle)$$

• Measure in 4-element basis $|\psi_{b_1b_2}\rangle =$

$$\frac{1}{2} \left(|0\rangle + (-1)^{b_1} |1\rangle + (-1)^{b_2} |2\rangle + (-1)^{b_1 + b_2} |3\rangle \right)$$

- Outcome b_1b_2 equals a_1a_2 with probability $|\langle \phi | \psi_{a_1a_2} \rangle|^2 = 3/4$
- ullet Base output on b_1b_2 and truth table of f

Step 1 (cntd)

• Take 2-query classical decoder. Fix randomness $R \Rightarrow$ this fixes j, k, f s.t.

$$\Pr_{R}[f(y_j, y_k) = x_i] = p \ge 1/2 + \varepsilon$$

• Lemma: 1 quantum query gives success

$$\frac{11}{14}p + \frac{3}{14}(1-p) = \frac{3}{14} + \frac{4p}{7} \ge \frac{1}{2} + \frac{4\varepsilon}{7}$$

Note: exactly 11/14 matters!

• This works for any x, y, i, hence a $(2, \delta, \varepsilon)$ -LDC is a $(1, \delta, 4\varepsilon/7)$ -LQDC

Step 2: Lower Bound for 1-LQDC

- Most general 1-query quantum decoder:
 - Apply query to $\sum\limits_{j=1}^m \alpha_j |j
 angle$, α_j non-negative (depend on i)
 - Apply POVM with elements D and I-D, Pr[output 1 on $|\phi\rangle$] = $p(\phi) = \langle \phi|D|\phi\rangle$
- $A=\{j: \alpha_j \leq 1/\sqrt{\delta m}\}$ (small amplitudes) $a=\sqrt{\sum_{j\in A}\alpha_j^2}$ $B=\{j: \alpha_j>1/\sqrt{\delta m}\}$ (large amplitudes) Note $|B|\leq \delta m$

Step 2: small amplitude-part predicts x_i

•
$$|A(x)\rangle = \sum_{j \in A} \alpha_j (-1)^{C(x)_j} |j\rangle, |B\rangle = \sum_{j \in B} \alpha_j |j\rangle$$

- States $|A(x)\rangle + |B\rangle$ and $|A(x)\rangle |B\rangle$ are corrupted only in B ($\leq \delta m$ positions)
- If $x_i = 1$: $p(A(x) + B), p(A(x) B) \ge \frac{1}{2} + \varepsilon$, hence $p(A(x)) + p(B) \ge 1/2 + \varepsilon$.

If
$$x'_i = 0$$
: $p(A(x')) + p(B) \le 1/2 - \varepsilon$

$$\Rightarrow p(A(x)/a) - p(A(x')/a) \ge 2\varepsilon/a^2$$

• Given $|A(x)\rangle/a$ we can determine x_i with probability $1/2 + \varepsilon/2a^2$

Step 2: get $|A(x)\rangle/a$ from uniform state

$$ullet |U(x)
angle = rac{1}{\sqrt{m}} \sum_{j=1}^m (-1)^{C(x)_j} |j
angle$$
, indep. of i

- \bullet Measure this with POVM M^*M , $I-M^*M$, where $M=\sqrt{\delta m}\sum_{j\in A}\alpha_j|j\rangle\langle j|$
- With prob $\delta a^2/2$: M turns $|U(x)\rangle$ into $|A(x)\rangle/a$ Else: output a coin flip

$$Pr[output = x_i] =$$

$$\underbrace{\frac{\delta a^2}{2} \left(\frac{1}{2} + \frac{\varepsilon}{2a^2}\right)}_{M \text{ succeeds}} + \underbrace{\left(1 - \frac{\delta a^2}{2}\right) \frac{1}{2}}_{M \text{ fails}} = \frac{1}{2} + \frac{\delta \varepsilon}{4} = p$$

• $|U(x)\rangle$ is a quantum random access code!

$$\underbrace{\log m}_{\text{#qubits of }U(x)} \ge \underbrace{(1-H(p))n}_{\text{RAC bound (Nayak 99)}}$$

LQDCs are shorter than LDCs

- Best known 2q-query LDCs (BIKR 02) output the XOR of the 2q bits
- Can do this with q quantum queries!

Queries	Length of LDC	Length of LQDC
q = 1	don't exist	$2^{\Theta(n)}$
q = 2	$2^{\Theta(n)}$	$2^{n^{3/10}}$
q = 3	$2^{n^{1/2}}$	$2^{n^{1/7}}$
q = 4	$2^{n^{3/10}}$	$2^{n^{1/11}}$

Private Information Retrieval

• User retrieves x_i from database x that is replicated over k non-communicating servers; individual server learns nothing about i

- How much communication is needed?
- 1-server PIR scheme needs $\Omega(n)$ bits, even quantum (Nayak 99)
- There is a 2-server PIR with $O(n^{1/3})$ bits (CGKS 95)

Lower Bound for Classical Binary PIR

- Binary PIR: servers send back only 1 bit
- Can reduce 2 binary classical servers to
 1 quantum server (treat servers as queries)
- $\Omega(n)$ lower bound for 1-server quantum PIR \Rightarrow $\Omega(n)$ lower bound for 2-server binary PIR
- Previously known only for linear PIR

Upper Bound for Quantum PIR

- Best known 2k-server binary PIRs (BIKR 02) output XOR of the 2k bits
- ullet Can do this with k quantum servers
- Better than best known k-server PIRs!

Servers	PIR complexity	QPIR complexity
k = 1	n	n
k = 2	$n^{1/3}$	$n^{3/10}$
k = 3	$n^{1/5.25}$	$n^{1/7}$
k = 4	$n^{1/7.87}$	$n^{1/11}$

Summary

- Exponential lower bound for 2-query LDCs via a quantum proof
- q-query LQDCs are shorter than LDCs
- Linear lower bound for 2-server binary PIR
- Upper bound $O(n^{3/10})$ for 2-server QPIR

Future Work

- Extend lower bound to more than 2 queries
- \bullet Extend to C(x) over non-binary alphabet