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Error-Correcting Codes

e Encoding C':{0,1}" — {0,1}™, m >n

e Even if C(x) is corrupted in dm positions,
we can still recover the whole x

e We can achieve this with m = O(n),
linear-time encoding and decoding.
O(1) time per bit!

e Disadvantage: if you only want one bit z;,
you still need to decode the whole C(x)



Locally Decodable Codes

e Recover x; with high probability, looking
only at a few positions in the codeword

e C:{0,1}" - {0,1}™ is a
(g, 90,e)-locally decodable code (LDC)
if there exists a randomized decoder A
such that for every y € {0,1}™ and ¢ € [n]

1. AY(2) makes < ¢ queries to bits of y

2. d(y,C(x)) <dm = Pr[AY(i) =x;] > 1/2+¢

o L QDCs: classical code, quantum queries



Example: Hadamard Code

o Define C(z); =7 -z mod 2
for all 7 € {0,1}", so m = 2"

e Example: C(11) = 0110

e Decode: pick random j € {0,1}",
query 7 and j5 © e;, output Yi D Yjope,

e Works perfectly if y = C(x) (no noise)
e §-corruption hits C(z); or C(x) ge,

with probability < 24, so

PriAY(i) = z;] > 1 — 26



What’'s Known About LDCs

Main question: tradeoff between g and m

e Upper bounds:
qg=m = m < O(n) (standard ECQC)
g = (logn)? = m < poly(n) (Babai et al)
constant ¢ = m < 2% (from PIR)

e Lower bounds:
Katz-Trevisan 99:

g=1 = LDCs don’t exist
g>1 — m > nltl/(e-1)
GKST 02:

q = 2,linear C = m > 2" c=0¢/8

e Our result:

q=2 = m > 2 also for non-linear LDCs



Proof Uses Quantum!

e Step 1:

2-query LDCs can be decoded
with 1 quantum query:

(2,8,£)-LDC is (1,6,4e/7)-LQDC

e Step 2:

(1,6,¢)-LQDC needs length m > 2",
forc=1— H(1/2 4 de/4) ~ (§¢)?



Step 1: From 2-LDC to 1-LQDC
Lemma: Any f:{0,1}2 — {0,1} can be

computed with 1 quantum query,
with success probability exactly 11/14

1
o Query 731(|0> + 1) +12))
= [¢) = 73 (10) + (=1)1) + (=1)"2]2))

e Measure in 4-element basis  [¢y,p,) =

% (10) + (—=1)1[1) + (=1)P2[2) 4 (—1)P17t2|3))

e Outcome b1br equals ajar with probability

[{p|tharan)|? = 3/4

e Base output on b1bo and truth table of f



Step 1 (cntd)

e [Take 2-query classical decoder.
Fix randomness R = this fixes j,k, f s.t.

PRr[f(yj,yk) =z]=p>1/2+¢

e Lemma: 1 quantum query gives success
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Note: exactly 11/14 matters!

e [ his works for any z,y,:, hence
a (2,6,e)-LDC is a (1,6,4¢/7)-LQDC



Step 2: Lower Bound for 1-LQDC

e Most general 1-query quantum decoder:

m

— Apply query to > ajlj),
Jj=1
a; non-negative (depend on )

— Apply POVM with elements D and I — D,
Prloutput 1 on |¢)] = p(¢) = (¢|D|9¢)

o A={j:a; <1/vdm} (small amplitudes)
a=/Yjeac]
B=1{j:a; >1/vdém} (large amplitudes)
Note |B| < dm




Step 2: small amplitude-part predicts z;

o [A(2)) =Y a;j(-=1) @5, |B) =Y ajlj)

JEA jEB

e States |A(x)) + |B) and |A(z)) — |B)
are corrupted only in B (< dm positions)

o If z; = 1: p(A(z) + B),p(A(z) — B) > 5 +«,
hence p(A(z)) +p(B) > 1/2+¢.

If 2 = 0: p(A(e')) +p(B) < 1/2 ¢

= p(A(z)/a) — p(A(z')/a) > 2¢/a®

e Given |A(x))/a we can determine x; with
probability 1/2 4 ¢/2a°?



Step 2: get |A(z))/a from uniform state

o [U(z)) = \/%jgjl(—l)c(x)jlj% indep. of i

e Measure this with POVM M*M, I — M*M,
where M = Vém ) «a;lj)(J

jEA

e With prob 6a?/2: M turns |U(z)) into |A(z))/a
Else: output a coin flip

Prloutput = ;] =

da? da?\ 1 de
5 +—)+<1‘7>5—§+z—p

N >4

M succeeds M fails

N

e |U(x)) is a quantum random access code!

log m > (1 — H(p))n
#qubits of U(xz) RAC bound (Nayak 99)




LQDCs are shorter than LDCs

e Best known 2¢-query LDCs (BIKR 02)
output the XOR of the 2q bits

e Can do this with g quantum queries!

Queries | Length of LDC | Length of LQDC
g=1 don't exist 209(n)
g =2 2@(n) 2n3/10
g =3 277/1/2 2n1/7
g =4 277/3/10 2n1/11




Private Information Retrieval

e User retrieves x; from database z that is
replicated over k non-communicating servers;
individual server learns nothing about @

e HoOw much communication is needed?

e 1-server PIR scheme needs Q2(n) bits,
even quantum (Nayak 99)

e There is a 2-server PIR with O(nl/3) bits
(CGKS 95)



Lower Bound for Classical Binary PIR

e Binary PIR: servers send back only 1 bit

e Can reduce 2 binary classical servers to
1 quantum server (treat servers as queries)

e 2(n) lower bound for 1-server quantum PIR

—
Q(n) lower bound for 2-server binary PIR

e Previously known only for linear PIR



Upper Bound for Quantum PIR

e Best known 2k-server binary PIRs
(BIKR 02) output XOR of the 2k bits

e Can do this with £ quantum servers

e Better than best known k-server PIRS!

Servers | PIR complexity | QPIR complexity
k=1 n n

L — D nl/3 n3/10

L — 3 n1/5.25 n1/7

L — 4 nl/7.87 nl/11




Summary

e EXxponential lower bound for 2-query LDCs
via a quantum proof

e g-query LQDCs are shorter than LDCs

e Linear lower bound for 2-server binary PIR

e Upper bound O(n3/10) for 2-server QPIR

Future Work

e EXxtend lower bound to more than 2 queries

e Extend to C'(x) over non-binary alphabet



