Decoherence in quantum walks
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Classical random walk on a line

1. Start at the origin. (discrete space and time)

2. Toss a coin, move one unit right for heads, left for tails.

3. Repeat step 2. T times.

4. Record current position, —T <z <T.

Repeat steps 1. to 4. many times — prob. dist. P(x,T), binomial

standard deviation (z2)1/2 = /T
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Quantum “random” walk on a line

No straightforward quantum analogue of classical random walk.
e Pure quantum system evolves unitarily — not random
e Quantum particle on lattice undergoing unitary evolution
— uninteresting translational motion [Meyer 1996]
e Several ways round this, here we choose a “quantum coin”

Quantum coin = 2-state quantum system (qubit), |R) and |L)
Particle states |x) (with = € Z) position on line.
Flip coin = Hadamard rotation:

H|z, R) = (|z, R) + |z, L))/V2

Hlz,L) = (|2, R) — |z, L))/V2

particle then shifts (S) one unit left/right conditioned on coin state:

Sle, Ly = |x — 1, L) Slz,R) = |z + 1, R)
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interference starts step 3



probability P(x)

Quantum walk on a line — 100 steps
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Standard deviation

Discrete quantum walk on a line solved analytically by
Ambainis, Bach, Nayak, Vishwanath, Watrous, STOC’01 (2001).

Solutions are complicated, mainly due to “parity” property:
— support only on even (odd) points for even (odd) time steps

Measure progress of walk by standard deviation (from the origin)

o2 (T) = ZZCBQP(CB, a,T)

Asymptotic (large T): o(T) = (1 — 1/v/2)1/2T

Contrast with /T for classical random walk

quadratic speed up




Physical implementations

Three proposals that are within reach of current experimental
capabilities

Trapped ion:
Travaglione, Milburn, PRA 65:032310 (2002) quant-ph/0109076
Propose this as severe test of decoherence in system

Phase space of cavity field:
Sanders, Bartlett, Tregenna, Knight, quant-ph/0207028
Haroche group? atom plays role of coin as it passes through cavity

Atom in optical lattice:
Diir, Raussendorf, Briegel, Kendon, quant-ph/0207137
Munich optical lattice experimentalists?



Decoherence

How to model decoherence?

p(t+1) = (1—p)S-H-p(t) -HN - ST
4+pP.S-H-p(t)-H -ST.P!

P is a projection that represents the action of the decoherence and p
is the probability of a decoherence event happening per time step.

Possible P

— coin state only

— particle state only

— both at once, projection into the prefered basis

Other possibilities:
— imperfect Hadamard operation
— imperfect shift




Standard deviation with decoherence

standard deviation (lattice units)
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Slope at p — 0

- _ T
op(T) = o(T) {1 2 o<p>}.

Compares well with simulation data, with second
order correction for o(T) = (1 — 1/V2)Y2(T — 1/T)
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Flat distributions
Look how distribution shape changes with p:
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Flat distributions

particle /Y — p=0025
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Quantify uniformity of distribution
total variational distance:

v(p,T) = ||P(@,p, T)—Pu(Dllty = ) |P(z,p, T)—Pu(T)]

P(x,p,T) is probability particle is at position =
after T time steps (regardless of coin state)
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Quantum walk on a cycle

Aharonov, Ambainis, Kempe, Vazirani, STOC’01, quant-ph/0012090

Mixing time (time averaged)

Me = min{T|vt > T : ||[P(z,p,t) — Pullty < ]

where

1 T
P(ﬂ?,p,T):?ZP(iE,p,t)
t=0

and P, is the limiting (uniform) distribution over the cycle.
Mixing time quantifies how long before the (time-averaged)
probability distribution of the particle position becomes uniform.

Classical value: M'®) = N2/16¢

(note: not log(1/e) because averaged)



Mixing times for N = 19 and N = 20 (e = 0.01)
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Mixing times for N =29 and N = 30
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Mixing times on cycle

Decoherence on cyclic quantum walks causes:

Even-N:

e mixes to uniform distribution (pure quantum does not)

e NOISe on coin, No quantum speed up

e noise on particle, quantum speed up MMM ~ aN/e = M8
Odd-N:

e Mmixes even faster than pure quantum, min at p ~ 2/N2

o for p < 16/N2, “quantum window” M. < M&

Y



Hypercube Kempe, quant-ph/0205083
Quantum random walks hit exponentially faster
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hitting probability, P,
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Hypercube hitting times

peak height scales as

Pp(p) = Pp(0) exp{—(N + o)p}

(0 < a < 2 depending on coin, particle or both decohered)
So exponential in p, but still quantum window:

p~1/N only lowers P;, by a factor of 1/e
still exponentially better than classical.

(Note p ~ N is sort of critical damping...)



Summary

e interesting regime of low decoherence where quantum things con-
tinue to happen

e for algorithms, optimal decoherence rates are > 0O
Open questions (partial list...)

e are these effects significant or useful for algorithms?
e do continuous time quantum walks show similar behaviour under
decoherence?

e are coined and continuous time quantum walks fundamentally dif-
ferent?

e how can we make more use of the coin to control the walk?

Much more work to do!

Story so far in quant-ph/0209005 (Kendon, Tregenna)
Also: Todd Brun, Hilary Carteret and Andris Ambainis, quant-ph/0208195



