Entanglement properties of Gaussian states

Geza Giedke

Klemens Hammerer Barbara Kraus

Max-Planck Institute for Quantum Optics

Gaussian states

 ρ is Gaussian if it can be written as:

$$\rho = k e^{-Q(X_A, P_A)}$$

 $Q \ge 0$ is a polynomial of degree 2

A B C $\bullet \bullet \bullet$ $dim(H_n) = \infty$ $[X_n, P_n] = i$ $H = \bigotimes_n H_n$

ρ is Gaussian if it can be written as:

 $\rho = k e^{-Q(X_n, P_n)}$

 $Q \ge 0$ is a polynomial of degree 2

Some interesting Gaussian states:

1. Coherent and squeezed states:

$$|\alpha\rangle \propto \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

 ∞

2. Two-mode squeezed states: $|\Phi_r\rangle \propto \sum_{n=0} \tanh^n(r) |n\rangle_A \otimes |n\rangle_B$

$$\frac{1}{2} \Big[\Delta \big(X_A - X_B \big) + \Delta \big(P_A + P_B \big) \Big] < 1$$

3. Thermal states:
$$\rho \propto \sum_{n=0}^{\infty} e^{-\kappa n} |n\rangle \langle n|$$

Why are Gaussian states interesting in Quantum Information?

1. They are relatively simple to handle mathematically.

Density operator ρ γ (correlation matrix)Hilbert spaceH \rightarrow X(symplectic vector space)

2. Display most of the interesting phenomena in QI. Entanglement (bound and free) Teleportation, Quantum Cryptography

3. Can be easily prepared and manipulated in experiments.

Passive elements:

Fibers, lenses, beam splitters, polarizers, lambda-plates, etc

Decoherence:

Homodyne detectors

Measurements:

Photon absorption, phase-shifts

Gaussian states can be prepared, manipulated, and measured

2. Atomic ensembles:

Two atomic ensembles (Polzik et al, Arhus)

2. Atomic ensembles:

Two atomic ensembles (Polzik et al, Arhus)

The light can analogously be described

$$H = g X_A X_L$$

Both, light and atoms, can be manipulated independently according to

$$H_{\text{Local}} = aX + bP + c(X^2 + P^2)$$

Using magnetic fields/polarizators and plates

Outline

Separability: Two modes (with L.M. Duan and P. Zoller)

Distillability (with L.M. Duan and P. Zoller)

Entanglement generation

Separability: General case (with M Lewenstein)

Gaussian Transformations

Distillability with Gaussian op.

Pure state transformations

(with J. Eisert and M. Plenio)

Entanglement

measures

(with M. Wolf and R. Werner)

1. Description

 $[X_n, P_n] = i$ $H = \bigotimes_n H_n$ $\rho = k e^{-Q(X_n, P_n)}$

All the information about the states is contained in the first and second moments: $(W) = (P^2) = (W, P, i, P, W)$

$$\langle X_1 \rangle, \langle P_1^2 \rangle, \langle X_1 P_3 + P_3 X_1 \rangle...$$

It is convenient to characterize Gaussian states by:

- Displacement vector: $d_{\alpha} = \langle R_{\alpha} \rangle$

where

- $R = (X_1, P_1, ..., X_N, P_N)$
- Correlation matrix: $\gamma_{\alpha,\beta} = \langle (R_{\alpha} d_{\alpha})(R_{\beta} d_{\beta}) \rangle + c.c.$

One mode, d=0: $\gamma = \begin{pmatrix} 2\langle X^2 \rangle & \langle XP + PX \rangle \\ \langle XP + PX \rangle & 2\langle P^2 \rangle \end{pmatrix}$

Two modes or two systems

$$\gamma = \begin{pmatrix} A & C \\ C^T & B \end{pmatrix}$$

Example: Two-mode squeezed states.

$$\rho = |\Phi_r\rangle \langle \Phi_r|$$
$$|\Phi_r\rangle \propto \sum_{n=0}^{\infty} \tanh^n(r) |n\rangle \otimes |n\rangle$$

Correlation matrix:

$$\gamma = \begin{pmatrix} A_r & C_r \\ C_r^T & B_r \end{pmatrix} \quad \text{where} \quad A_r = B_r = \cosh(r) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\ C_r = \sinh(r) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Note that for $r \rightarrow \infty$ we have an (improper) maximally entangled state, i.e., maximally entangled states are (limit) of Gaussian states.

Example: NxN-mode squeezed states.

$$\gamma = \begin{pmatrix} A_r & C_r \\ C_r^T & B_r \end{pmatrix}$$

where

 $A_r = B_r = \cosh(r) P$ $C_r = \sinh(r) \Lambda$

 $\Lambda = \sigma_z \oplus \sigma_z \oplus \dots$

- Given $\rho \propto e^{-H(X_1,P_1,X_2,P_2,...)}$ it is very simple to determine the displacement and the correlation matrix.
- Given the displacement vector and the correlation matrix, one can also determine ρ

$$\rho = \pi^{-N} \int_{i^{2N}} dx e^{-\frac{1}{4}x^T \gamma x + id^T x} W(x)$$

where

 $W(x) = e^{-ix^T R}$ are the Weyl operators.

When is γ a correlation matrix?

For valid density operators: $\gamma = \gamma^T \ge iJ$

where $J = J_2 \oplus J_2 \oplus ...$ is the "symplectic matrix"

and
$$J_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

2. Entanglement

Given a CM, γ_0 : does it correspond to a separable state (separable)?

What is known?

For N=M=1, partial transposition is a necessary and sufficient condition.

(L.M. Duan, G. Giedke, I.Cirac and P. Zoller, 2000, Simon, 2000)

For N=M=2, there exist PPT entangled states

(R. Werner and M. Wolf,2001))

Separability criterion

(G. Giedke, B. Kraus, M. Lewenstein, and Cirac, 2001)

• Idea: define a map

$$A_{N+1} \coloneqq B_{N+1} \coloneqq A_N - \Re \Big[C_N (B_N - iJ)^{-1} C_N^T \Big]$$
$$C_{N+1} \coloneqq -\Im \Big[C_N (B_N - iJ)^{-1} C_N^T \Big]$$

- Facts:
 - γ_N is a CM of a separable state iff γ_{N+1} is too.
 - If γ_N is a CM of an entangled state, then either

$$\gamma_{N+1}$$
 is no CM
or
 γ_{N+1} is a CM of an entangled state

• If γ_0 is separable, then $\gamma_N \to \gamma_\infty$. This last corresponds to $\rho_\infty = \rho_A \otimes \rho_B$ (for which one can readily see that is separable)

Connection to positive maps?

- Map for CM's: $\gamma_N \rightarrow \gamma_{N+1}$
- Map for density operators: $\rho_{\scriptscriptstyle N} = e^{-H_{\scriptscriptstyle N}} o
 ho_{\scriptscriptstyle N+1} = e^{-H_{\scriptscriptstyle N+1}}$

3. Gaussian transformations

What can we do with these systems?

Mathematical description of physical operations: $ho_{in}
ightarrow
ho_{out}$

It is difficult:

Mathematical description excluding measurements: Demoen et al, 1977

We want to know:

-Which operations transform Gaussian states into Gaussian states. -If all of them can be performed with the tools available in the lab. -Which can be performed locally (GLOCC).

Characterization of Gaussian operations $\boldsymbol{\mathcal{E}}$

Idea: Use the identity (Jamiolkovski)

 $E = (\mathcal{E} \otimes 1)(|\Phi\rangle \langle \Phi|)$

 $\varepsilon(\rho) = \operatorname{tr}_{2,3}[(E_{1,2} \otimes \rho_3)(|\Phi\rangle_{2,3}\langle\Phi|)]$

For Gaussians:

where

 \Rightarrow *E* whatever it is, it can be characterized by Γ , *D*

$$\gamma' = \mathbf{f}_{1}^{\prime 0} - \mathbf{f}_{12}^{\prime 0} \frac{1}{\mathbf{f}_{2}^{\prime 0} + \gamma} \mathbf{f}_{12}^{\prime 7}$$

Remarks:

$$\gamma' = \mathbf{I}_{1}^{\prime 0} - \mathbf{I}_{12}^{\prime 0} \frac{1}{\mathbf{I}_{2}^{\prime 0} + \gamma} \mathbf{I}_{12}^{\prime 0}$$

• γ' is a non-linear function of γ

- All Gaussian operations can be implemented in the lab, since E can be prepared in the lab, and Bell measurements can be performed
- For two or more systems, the operation is a GLOCC iff Γ is separable:

Cirac, Dür, Kraus, and Lewenstein, 2001

4. Gaussian distillation

Gaussian distillation:

Can we distill using the tools that are available in the lab? (beam splitters, polarizers, homodyne measurements, etc)

Gaussian distillation is a relevant open problem since it is required for long distance quantum communication using quantum repeaters

Note that

• In general, the distillability problem has been solved!

Gaussian states are distillable iff they are NPT: (Giedke, Kraus, Lewenstein and Cirac. 2001)

But we are considering here only Gaussian operations.

• Eisert, Sheel, and Plenio have shown that the negativity of two symmetric copies in 1x1 modes cannot increase using some particular operations: Eisert, et al 2002

We show that $\rho^{\otimes N} \rightarrow |\Phi\rangle\langle\Phi|$ is impossible with GLOCC

Idea:

1) We define a quantity, $P(\gamma)$ related to the entanglement of the state:

 $p(\gamma) = 1$ if γ is separable. $p(\gamma) < 1$ if γ is inseparable. $p(\gamma) = 0$ if γ is maximally entangled. $p(\gamma \oplus \gamma \oplus ...) = p(\gamma)$

2) $p(\gamma)$ cannot be decreased by GLOCC

Gaussian measure of entanglement: $p(\gamma)$

• For separable states we know that there exist $\gamma_{A,B} \ge iJ$ such that

 $\gamma \geq \gamma_A \oplus \gamma_B$ (R. Werner and M. Wolf, 00)

• For entangled states we can always find $\gamma_{A,B} \ge iJ$ and $p \in [0,1)$ such that

 $\gamma \geq p(\gamma_A \oplus \gamma_B)$

(for example, take p=0).

• We take the maximum p (smaller or equal to 1), and call it $p(\gamma)$

-For separable states: $p(\gamma) = 1$ -For entangled states: $p(\gamma) < 1$

Properties:

- Cannot increase by GLOCC
- Includes PPTES.
- Can be computed.

5. Entanglement generation

(Kraus, Hammerer, Giedke, Cirac, quant-ph2002)

$$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$$

We have at our disposal:

Interaction: $H_0 = g X_A X_L$

Certain local operations: $H_{\text{Local}} = aX + bP + c(X^2 + P^2)$

What can we do?

- Which operations and states can be generated?
- How to entangle these systems optimally?

5.1 Hamiltonian simulation:

Given $H = (X_A, P_A)K(X_B, P_B)$ and H_{Local} we want to study under which conditions one can simulate $H^0 = (X_A, P_A)K(X_B, P_B)$

we have the necessary and sufficient conditions:

 $(s_1 + s_2)t \ge (\$_1 + \$_2)T$ $(s_1 - s_2)t \ge (\$_1 - \$_2)T$

- Every H can simulate H' except if $s_1 = \pm s_2$
- The original interaction is universal.
- Any Gaussian operation can be implemented.
- Any Gaussian state can be created.

Application: quantum memory: $H_0 = X_A P_L - P_A X_L$

Application: spin squeezing: $|\Psi\rangle_{A} = |\Phi_{r}\rangle$

5.2 Optimal generation of entanglement

Given
$$H = (X_A, P_A)K(X_B, P_B)$$
, H_{Local} and some

initial state γ , we want to generate entanglement.

Entanglement rate:
$$\Gamma_E \coloneqq \lim_{\delta t \to 0} \frac{E[\gamma(\delta t)] - E(\gamma)}{\delta t} \bigg|_{\text{opt}} \propto \frac{s_1 e^l - s_2 e^{-l}}{s_1 e^l}$$

where
$$\cosh(2l) = \frac{\det(A)}{-2\det(C)} \operatorname{tr} \left(A^{-2}CC^{T} \right) \qquad \qquad \gamma_{0} = \begin{pmatrix} A & C \\ C^{T} & B \end{pmatrix}$$

- Some Hamiltonians cannot produce entanglement if there is no initial squeezing l = 0
- Entanglement is more efficiently created if the systems are squeezed $l \neq 0$
- The systems have to be "properly squeezed".
- The rate is not bounded.
- For the an unsqueezed initial state and the physical Hamiltonian, $E(t)|_{opt} = t$