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Some interesting Gaussian states:

1. Coherent and squeezed states:

2. Two-mode squeezed states:
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Why are Gaussian states interesting in Quantum Information?

2. Display most of the interesting phenomena in QI.

ρ
H

γ (correlation matrix)
X (symplectic vector space)

Density operator
Hilbert space

1. They are relatively simple to handle mathematically.

Entanglement (bound and free)
Teleportation, Quantum Cryptography

3. Can be easily prepared and manipulated in experiments.



1. Optics

Sources: Passive elements:

Lasers

Crystals

Fibers, lenses, beam splitters, 
polarizers, lambda-plates, etc

Measurements:

Homodyne detectors

Decoherence:

Photon absorption, phase-shifts

Gaussian states can be prepared, manipulated, and measured



2. Atomic ensembles:
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[ , ]y z xJ J iJ=Two atomic ensembles
(Polzik et al, Arhus)
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A LH gX X=

2. Atomic ensembles:

Two atomic ensembles
(Polzik et al, Arhus)
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The light can analogously be described

Both, light and atoms, can be manipulated
independently according to 

2 2
Local ( )H aX bP c X P= + + +

Using magnetic fields/polarizators and plates



Gaussian
Transformations

Distillability 
with Gaussian op.

Entanglement
generation

Separability:
Two modes

(with L.M. Duan and P. Zoller)

Separability:
General case
(with M Lewenstein)

Distillability
(with L.M. Duan and P. Zoller)

Pure state 
transformations

(with J. Eisert and M. Plenio)Entanglement
measures

(with M. Wolf and R. Werner)
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N-modes

All the information about the states is contained in the first and second
moments:  
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It is convenient to characterize Gaussian states by:

- Displacement vector: d Rα α= � �

- Correlation matrix:
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Example: NxN-mode squeezed states.
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Note that for             we have an (improper) maximally entangled state,
i.e., maximally entangled states are (limit) of Gaussian states.

r → ∞

Example: Two-mode squeezed states.
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For valid density operators:

where

and

is the „symplectic matrix“

T iJγ γ= ≥

Given                               it is very simple to determine the displacement and 
the correlation matrix.
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Given the displacement vector and the correlation matrix, one can also 
determine ρ
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Given a CM,    : does it correspond to a separable state (separable)?
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What is known?

For N=M=2, there exist PPT entangled states
(R. Werner and M. Wolf,2001))

For N=M=1, partial transposition is a necessary and sufficient condition.
(L.M. Duan, G. Giedke, I.Cirac and P. Zoller, 2000, Simon, 2000)



Idea: define a map

is a CM  of a separable state iff         is too.

If       is a CM of an entangled state, then either

If     is separable, then                . This last corresponds to 

is no CM
or

is a CM of an entangled state

...

(for which one can readily see that is separable)

Facts:
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Separability criterion
(G. Giedke, B. Kraus, M. Lewenstein, and Cirac, 2001)
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Map for CM‘s:

Map for density operators:

Is non-linear!

Gaussian

separable

density operators

Connection to positive maps?
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What can we do with these systems?
Mathematical description of physical operations:

ancilla
aρ

inρ

outρ

A B

Mathematical description excluding measurements: Demoen et al, 1977

in out→ρ ρ

It is difficult:

We want to know:

-Which operations transform Gaussian states into Gaussian states.
-If all of them can be performed with the tools available in the lab.
-Which can be performed locally (GLOCC).

inρ

outρ
outρ



Idea: Use the identity (Jamiolkovski)
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ε is a Gaussian operation
is a Gaussian state

E� whatever it is, it can be characterized by , DΓ
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Remarks:

is a non-linear function of 'γ γ

All Gaussian operations can be implemented in the lab, since E can be prepared 
in the lab, and Bell measurements can be performed

For two or more systems, the operation is a GLOCC iff Γ is separable:
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Cirac, Dür, Kraus, and Lewenstein, 2001



A
B

Gaussian:
ρ

Gaussian distillation:

Can we distill using the tools that are available in the lab?
(beam splitters, polarizers, homodyne measurements, etc)

in out | |N⊗= → = Ψ��Ψρ ρ ρ

Gaussian distillation is a relevant open problem since it is required
for long distance quantum communication using quantum repeaters  



Note that

In general, the distillability problem has been solved!

Gaussian states are distillable iff they are NPT: (Giedke,Kraus,Lewenstein and Cirac. 2001)

But we are considering here only Gaussian operations.

Eisert, Sheel, and Plenio have shown that the negativity of two symmetric copies in 
1x1 modes cannot increase using some particular operations: Eisert, et al 2002

ρ

ρ

(set-up used for two qubits: Bennet et al, 93)

- Distillation could be possible with non-symmetric states.
- With more than two copies.
- Using other operations.
- Other measures of entanglement may increase.

But:



( ) 1p γ =

We show that                          is impossible with GLOCC 

Idea:

2) cannot be decreased by GLOCC

| |N⊗ → Φ��Φρ

( )p γ

if γ is separable.
( ) 1p γ < if γ is inseparable.
( ) 0p γ = if γ is maximally entangled.
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( )p γ

For separable states we know that there exist                 such that,A B iJγ ≥

A Bγ γ γ≥ ⊕

For entangled states we can always find and               such that,A B iJγ ≥

( )A Bpγ γ γ≥ ⊕

[0,1)p ∈

We take the maximum p (smaller or equal to 1), and call it ( )p γ

(for example, take p=0).

-For separable states:
-For entangled states:

( ) 1p γ =
( ) 1p γ <

(R. Werner and M. Wolf, 00)

Gaussian measure of entanglement:

Properties:

- Cannot increase by GLOCC
- Includes PPTES.
- Can be computed.
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Local ( )H aX bP c X P= + + +

We have at our disposal: 

Interaction:

Certain local operations:

What can we do?

- Which operations and states can be generated?

- How to entangle these systems optimally?

(Kraus, Hammerer, Giedke, Cirac, quant-ph2002)



5.1 Hamiltonian simulation:
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(for qubits, see Bennet et al, 2002)
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we have the necessary and sufficient conditions:
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Given and LocalH we want to study under which

conditions one can simulate ( , ) ( , )A A B BH X P K X P=% %



- Every H can simulate H‘ except if

- The original interaction is universal.

- Any Gaussian operation can be implemented.

- Any Gaussian state can be created.

1 2s s= ±

Application: quantum memory:
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Application: spin squeezing: | |A rΨ� = Φ �



5.2 Optimal generation of entanglement

Given ( , ) ( , )A A B BH X P K X P= , LocalH and some

initial state     , we want to generate entanglement.γ

Entanglement rate: 
(for qubits, see Dür,Vidal,Cirac,Linden and Popescu, 2001)
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- Some Hamiltonians cannot produce entanglement if there is no initial squeezing

- Entanglement is more efficiently created if the systems are squeezed

- The systems have to be „properly squeezed“.

- The rate is not bounded. 

- For the an unsqueezed initial state and the physical Hamiltonian, 
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