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Gaussian states

é pis Gaussian if it can be written as:
dim(H) = o 0 = ke Q0P
[Xa Pal =1 Q=0 isapolynomia of degree 2
ﬁ E 2 p Is Gaussian if it can be written as:
dim(H ) = 9= @ e
[X, RI=1

Q=0 isapolynomial of degree 2
H=0H,



Some interesting Gaussian states:

1. Coherent and squeezed states:  |o) 0 ) = In)
n=0 \/ﬁ

2. Two-mode squeezed states: |,y 0 ) tanh"(r) |n) .0 n),

n=0

%[A(XA—XB) +A(P, +Ry) | <1

3. Thermal states; p0 » € [n)n|
n=0



Why are Gaussian states interesting in Quantum Information?

1. They arerelatively ssimple to handle mathematically.
Density operator P Y (corréation matrix)
Hilbert space H ™= X (symplectic vector space)

2. Display most of the interesting phenomenain QI.

Entanglement (bound and free)
Teleportation, Quantum Cryptography

3. Can be easily prepared and manipulated in experiments.



1. Optics

Sources: Passive elements:
Lasers Fibers, lenses, beam splitters,
—i polarizers, lambda-plates, etc
Crystals <
M easurements: Decoherence:
Homodyne detectors ‘ Photon absorption, phase-shifts

Gaussian states can be prepared, manipulated, and measured



2. Atomic ensembles:
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2. Atomic ensembles:

O 0. O (O0) 1
oO
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The light can analogously be described

H =gX, X,

Two atomic ensembles _ _
(Polzik et al, Arhus) Both, light and atoms, can be manipulated

Independently according to

H a =aX +bP +c(X? +P?)

Using magnetic fields/polarizators and plates
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1. Description

1 2 N
e © -
[Xo R]=] p = ke %R
N-modes H=UH,

All the information about the states is contained in the first and second

moments: ,
(X (R (X R+ B X))...

It is convenient to characterize Gaussian states by: where
- Displacement vector: d, =(R ) R=(X,R..... X\, Ry)

- Correlation matrix:  Vap ={(R, —d,)(R; —d;)) +cc.

One mode, d=0: Two modes or two systems

[ AX? (XP+PX) _(A Cj
loxpepxy 2P V=l s



Example: Two-mode squeezed states.
p :| q)r><q)r | <
—
|®,) 0 tanh™(r) [ MO )
n=0
Correlation matrix:

1 0
V:(A er where A =5 _COSh(r)KO 1}

C' B
1 0
C, =sinnh(r)
0 -1

Note that for r — o« we have an (improper) maximally entangled state,
l.e., maximally entangled states are (limit) of Gaussian states.

Example: NxN-mode squeezed states. —
(|
A C A =B, =cosh(r)P
V=1 1 where _
C B C. =sinh(r)A

N=o,00] ..



H(X{,B. X5,B,...)

e Given pLle
the correlation matrix.

it is very simple to determine the displacement and

¢ Given the displacement vector and the correlation matrix, one can also
determine p

—ExTyx+ide

o=m" IZN dxe * W(X)

where

W(X) = e™R  are the Weyl operators.

When is YV a correlation matrix?

For valid density operators: y =)' =iJ

where J=J,0J0 ... isthe ,symplectic matrix*

0 -1
and J, = 1 0



2. Entanglement

1 2 N 1 2 M
©0 O - 00 ®

N-modes M-modes

2nX2n
A C

C' B

2mxX2m

Yo =

Given a CM, Y,: does it correspond to a separable state (separable)?

What is known?

For N=M=1, partial transposition is a necessary and sufficient condition.
(L.M. Duan, G. Giedke, I.Cirac and P. Zoller, 2000, Simon, 2000)

For N=M=2, there exist PPT entangled states
(R. Werner and M. Wolf,2001))



Separability criterion

(G. Giedke, B. Kraus, M. Lewenstein, and Cirac, 2001)

2n2(\2n c
e [dea: define a map Vo =
C' B
2mX2m
yo/\yl/\yz/\m /\VN

An=Byu=A - DI:CN (By- iJ)_lclliI

o — i1\ 1T
e Facts: CN+1'_ DI:CN(BN |J) CN:I

* /nisa CM of a separable state iff ¥n+ is too.

YN+ 1S N0 CM
®If Vn is a CM of an entangled state, then either or
YN+ is a CM of an entangled state

e If ¥, is separable, then ¥y — Y. . This last corresponds to 02, = P, U og
(for which one can readily see that is separable)



Connection to positive maps?

e Map for CM's: Vn = Wiu

e Map for density operators: Pn =e™ P+ =z

Is non-linear!

density operators

Gaussian

N

separable
/'\A
4/



3. Gaussian transformations

What can we do with these systems?

Mathematical description of physical operations: O, — Oy

It is difficult:

Mathematical description excluding measurements: pemoen et al, 1977

We want to know:

-Which operations transform Gaussian states into Gaussian states.
-If all of them can be performed with the tools available in the lab.
-Which can be performed locally (GLOCC).



Characterization of Gaussian operations &

Physical explanation
ldea:  Use the identity (Jamiolkovski)

L
E E
£(P) =tha[(Ep, O o) ), o(® )] p = &)

| )
where

E
E=(e0D@ X®) o = EI

For Gaussians:

| P) are Gaussian states _ _
= E is a Gaussian state

€ is a Gaussian operation

— E whatever it is, it can be characterized by I',D

1
—Po—Po __— %
14 1 12|g/g+y 12



Remarks:

1
'— Po— P4 4]
y —ﬁ/f sz Ig/g+ylglz

e V' is a non-linear function of ¥

e All Gaussian operations can be implemented in the lab, since E can be prepared
in the lab, and Bell measurements can be performed

® For two or more systems, the operation is a GLOCC iff I' is separable:

Cirac, Dur, Kraus, and Lewenstein, 2001



4. Gaussian distillation

Gaussian distillation:

Can we distill using the tools that are available in the lab?
(beam splitters, polarizers, homodyne measurements, etc)

i\ I , z ul
| | Gaussian: I ﬂ

P =P " = Py I WKW

Gaussian distillation is a relevant open problem since it is required
for long distance quantum communication using quantum repeaters



Note that

e In general, the distillability problem has been solved!

Gaussian states are distillable iff they are NPT: (Giedke Kraus,Lewenstein and Cirac. 2001)

But we are considering here only Gaussian operations.

® Eisert, Sheel, and Plenio have shown that the negativity of two symmetric copies in
1x1 modes cannot increase using some particular operations: Eisert, et al 2002

o m— T

(set-up used for two qubits: sennet et al, 93)

But: Distillation could be possible with non-symmetric states.

- With more than two copies.
- Using other operations.
- Other measures of entanglement may increase.



We show that p™" —|®X®| is impossible with GLOCC

ldea:

1) We define a quantity, P()) related to the entanglement of the state:

p(y) =1 ifyis separable.
p(y) <1 ifyisinseparable.
p(y) =0 if yis maximally entangled.

p(yO @ .5 p(y

2) P(y) cannot be decreased by GLOCC

) | ?{ | p(y)—po>0
| | N opyOpg D p O

* GLOCC

| ) p(y) - 0




Gaussian measure of entanglement: P(})

* For separable states we know that there exist ), =1J such that

yz2Va [ |4 (R. Werner and M. Wolf, 00)

e For entangled states we can always find Y. 21J and p[0,1) such that

yzp(yat K)

(for example, take p=0).
e We take the maximum p (smaller or equal to 1), and call it P(y)

-For separable states: p(y) =1
-For entangled states: p(y) <1

Properties:

- Cannot increase by GLOCC
- Includes PPTES.
- Can be computed.



5. Entanglement generation

(Kraus, Hammerer, Giedke, Cirac, quant-ph2002)

OO Oo (O0) 1
[oNeNeNoNoNe) oo
o

—10)

We have at our disposal:

Interaction: H, = gX,X,

Certain local operations: H,_, =aX +bP +¢(X? +P?)
What can we do?

- Which operations and states can be generated?

- How to entangle these systems optimally?



5.1 Hamiltonian simulation:

Given H =(X,,P,)K(X;s,R) and H ., we wantto study under which

conditions one can simulate F°= (XA Py) I’Q/EXB, F)

Y
¢t 0 —PPp o 0 _
T s T, T, t=> dt,
H H H H
oa? e o = e o = e o = e e

(for qubits, see Bennet et al, 2002)

Writting K:O(zL OJ(% where s 2[s,| and O,d%s0(2)
S

we have the necessary and sufficient conditions:

(s +s)t=(8e+PT
(S —s)t=(80-99T



- Every H can simulate H' except if S = %S,
- The original interaction is universal.
- Any Gaussian operation can be implemented.

- Any Gaussian state can be created.

Application: quantum memory: H, = X,B =P, X,

|¥)

Application: spin squeezing: |W), =| P )



5.2 Optimal generation of entanglement

Given H =(X,,P)K(X;,R;), H . @ndsome

O OO O:.0
oO

800080w800

oO O "0 O oO

initial state Y , we want to generate entanglement.

. E[y(&)] —E _
Entanglement rate: e = gtlrj(l) LY )B]t g Ose- se
(for qubits, see Dur,Vidal,Cirac,Linden and Popescu, 2001) e
det(A) - (A C
where cosh(2l) =—————tr(A“CC =
() —2det(C) ( ) e B

- Some Hamiltonians cannot produce entanglement if there is no initial squeezing| =0
- Entanglement is more efficiently created if the systems are squeezed | #0

- The systems have to be ,properly squeezed".

- The rate is not bounded.

- For the an unsqueezed initial state and the physical Hamiltonian, E(t)\Olot =1



