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Let Φ : A1 → A2 be a linear map on op. alg., e.g. n× n matrices

• positivity preserving if P > 0 ⇒ Φ(P ) > 0

• completely positive if pos. pres, on Cn×n ⊗A1, i.e.,

Γ > 0 ⇒ (I ⊗Φ)(Γ) > 0 Γ in Cn×n ⊗A1.

By Choi suffices to consider Γ max entang.

• entanglement breaking if (I ⊗Φ)(Γ) separable, i.e.,

(I ⊗Φ)(Γ) =
∑
k tkγk ⊗ ρk for all Γ in Cn×n ⊗A1

Φ maps entangled states to separable ones
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Holevo channel Ω(P ) =
∑
k Rk Tr (PXk) where

each Rk a density matrix and

{Xk} a POVM (recall Xk > 0 &
∑
k Xk = I)

Special cases CQ: Xk = |ek〉〈ek| QC: Rk = |ek〉〈ek|

Point: POVM = {I} so that Ω(P ) = R0 ∀ P [also CQ]

Thm: (M. Horodecki and Shor) Φ is Ent Break ⇔ Holevo

Thm: (Shor) If Φ Ent Break and Ω arbitrary

a) minimal entropy of Φ⊗Ω additive, and

b) Holevo capacity of Φ⊗Ω additive

Set of E.B. channels is convex. What are extreme points?

{Xk} and extreme POVM and all Rk pure NOT sufficient
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Thm: For qubit channels, the following are equivalent

A) Φ has the Holevo form Φ(P ) =
∑
k Rk Tr (PXk).

B) Φ is entanglement breaking.

C) Φ ◦ T is completely positive, where T (ρ) = ρT is the transpose.

D) Φ has “sign-change” property: changing any λk → −λk
in canon. param. yields another completely positive map.

E) Φ is in the convex hull of CQ maps.

For d > 2 have only (E) ⇒ (A) ⇔ (B) ⇒ (C) See erratum at end

Can get (C’) ⇒ (B) if T replaced by a set of entang witnesses
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Recall TFAE for Φ : A1 → A2

• Completely Positive and Trace-Preserving

• Stinespring: can find reps πj of algs s.t.

Φ[π1(B)] = V [π2Φ(B)]V †, V †V = I

• Kraus (also Choi): can find Ak s.t.

Φ(P ) =
∑
k

AkPA
†
k,

∑
k

A
†
kAk = I

unital, i.e. Φ(I1) = I2 ⇔
∑
k AkA

†
k = I

non-unique, but can define canonical

• Stinespring/Lindblad: can find HB, QB, unitary U s.t.

Φ(P ) = TrB[UP ⊗QBU
†]

• Choi (I ⊗Φ)(ΓC) > 0 where ΓC max entang
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Closer look at Choi’s Thm. and consequences

Horodecki reform φ =
1√
d

d∑
j=1

|jj〉 max entang

Γ = |φ〉〈φ| =
1√
d

∑
jk

|j〉〈k| ⊗ |j〉〈k|

(I ⊗Φ)(|φ〉〈φ|) =
1√
d

∑
jk

|j〉〈k| ⊗Φ(|j〉〈k|) > 0

Choi matrix ΓC is d2 ⊗ d2 with d× d blocks Ejk

where Ejk = |j〉〈k| has 1 in j-k spot, 0’s elsewhere

Get 1-1 corr. between linear op on Cd×d and states on Cd ⊗Cd

both d2 × d2 Φ ↔ (I ⊗Φ)(ΓC)

Aside: Eigenvecs of (I ⊗Φ)(ΓC) are d2 × 1: corr. to d× d

yields Kraus ops (see Leung quant-ph/0201119 JMP)
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Let G1 . . . Gd2 be O.N. basis for Cd×d

〈Gm,Gn〉 = Tr G†mGn = δmn

Can rep Φ by matrix gmn = Tr G†mΦ(Gn)

If G0 = 1√
d
I, then TrGm = 0 for m = 1,2 . . . d2−1 so that

trace-preserving, implies first row has form (1 0 0 . . . 0 )

d = 2: Pauli matrices natural choice {I, σx, σy, σz}

One extension: d > 2, G0 = 1√
d
I, G1 . . . Gd−1 diagonal

rest: Gd . . . Gd2−1 have form 1√
2
(Ejk + Ekj) self-adjoint

Downside: Density matrix ρ = G0 +
∑d2−1
k=1 ukGk

no simple cond on uk guarantee ρ pos semi-def

unrelated to mult props of Pauli which can extend for d = 2n
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Qubit channels: Rep. Φ in basis {I, σx, σy, σz} for C2×2

Density matrix ρ = 1
2[I + w · σ] where w in R3

ρ a one-dim proj (pure state) ⇔ |w| = 1.

After rotation and diag can assume wlog φ is rep. by

T =


1 0 0 0

t1 λ1 0 0

t2 0 λ2 0

t3 0 0 λ3

 =

(
1 0
t Λ

)

or, equivalently,

Φ : 1
2 [I + w·σ] �→ 1

2

I +
∑
k

(tk + λkwk)σk


Image Φ(ρ) is translated ellipsoid(

x1 − t1
λ1

)2

+

(
x2 − t2
λ2

)2

+

(
x3 − t3
λ3

)2

= 1

But NOT all ellipsoids come from CPT map — need conds on tk, λk
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Rep. Φ in form T =


1 0 0 0

t1 λ1 0 0

t2 0 λ2 0

t3 0 0 λ3

 =

(
1 0
t Λ

)
in fixed basis

Φ(ρ)→ Φ(σ†jρσj) takes λk → −λk for k �= j: change two signs

Φ(ρ)→ Φ(ρT ) takes λ2 → −λ2: change one sign — not C.P.

Non-diag form requires 12 parameters
Two rotations use 6 param — leaves 6 in above canon form

Use convex subsets: All stochastic (CPT) Φ for qubits 12 param
⊃ all CPT Φ with T in canon form in fixed basis 6 param
⊃ all CPT Φ with basis and (t1, t2, t3) fixed 3 param

special case: t = (0,0,0) gives unital Φ(I) = I
⊃ all CPT Φ with basis, (t1, t2, t3) and λ3 fixed 2 param

can plot in 2-dim λ1, λ2 use λ± = λ1 ± λ2

In each case, Ent.-Break Φ also convex subset
in fact intersection with one (or three) sign changes for λk.
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Choi’s C.P. cond for d = 2:

(I ⊗Φ)(ΓC) > 0 ⇔ R
†
ΦRΦ ≤ I

(I ⊗Φ)(ΓC) =

(
Φ(E11) Φ(E12)

Φ(E21) Φ(E22)

)

=

(
Φ(E11)

√
Φ(E11)RΦ

√
Φ(E22)√

Φ(E22)R
†
Φ

√
Φ(E11) Φ(E22)

)

actually apply to adjoint Φ̂

RΦ =


t1+it2

(1+t3+λ3)1/2(1−t3−λ3)1/2
λ1+λ2

(1+t3+λ3)1/2(1−t3+λ3)1/2

λ1−λ2
(1+t3−λ3)1/2(1−t3−λ3)1/2

t1+it2
(1+t3−λ3)1/2(1−t3+λ3)1/2



Can rewrite I −R
†
ΦRΦ =

(
m11 m12

m21 m22

)
> 0 as ineq for λk, tk

Have reduced pos semi-def conds from 4× 4 to 2× 2
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I −R
†
ΦRΦ =

(
m11 m12

m21 m22

)
> 0

Diag conditions using λ± = λ1 ± λ2

m11 ≥ 0 ⇔ |λ+|2 ≤ |1 + λ3|2 − |t|2 ± . . .

m22 ≥ 0 ⇔ |λ−|2 ≤ |1− λ3|2 − |t|2 ± . . .

and det(I −R
†
ΦRΦ) = m11m22 − |m12|2 ≥ 0

Extreme points need equality in mkk ≥ 0 and det is redundant.

In most other situations, detM > 0 is stronger. (Fig. 1)

Can plot allowed λ± = λ1 ± λ2 for Ent-Break maps with fixed

(t1, t2, t3) and λ3 using det cond with and without sign change
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Figure 1: The λ+-λ− plane showing the regions described by the diagonal conditions (dotted
lines) and the curves corresponding to det(I − R†ΦRΦ) = 0 for t = (0.2, 0.3, 0) and λ3 = 0.35.
The closed curve and its interior describes the parameters for which the corresponding map is
completely positive.
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Figure 2: The λ+-λ− plane showing the region determined by determinant condition when
t = (0.4, 0.3, 0.0) and λ3 = 0.15 and the corresponding region with λ+ andλ− interchanged.
The intersection corresponds to the entanglement breaking maps with the indicated parameters.



qubit QC and CQ channels

recall param and qubit extreme points

T =


1 0 0 0

t1 λ1 0 0

t2 0 λ2 0

t3 0 0 λ3

 =


1 0 0 0
0 cosu 0 0
0 0 cos v 0

sinu sin v 0 0 cosu cos v



QC and CQ both have two λk = 0 : Bloch sphere maps to line

QC: Φ : 1
2[I + w·σ] �→ 1

2[I + (t3 + λ3w3)σ3]

CQ: Φ : 1
2[I + w·σ] �→ 1

2[I + t1σ1 + λ3w3 σ3] shift orthog to line

extreme �→ 1
2[I + cos θ σ1 + sin θ w3 σ3]

Qubit map is both extreme and Ent. Break ⇔ CQ

turns out (non-trival) all extreme pts of Qubit E.B. are CQ
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Thm: Φ Ent-Break ⇒ ∑
k |λk| ≤ 1

Interp: E.B. maps are “noisy” (extends to d > 2)

BUT some noisy Φ are not E.B.

extreme quibt Φ no E.B. unless image is point ⇔ λk = 0

(cond for extreme to be CQ)

extreme (amp. damp) can have
∑
k |λk| very small not be E.B.

Thm: Unital qubit Φ Ent-Break ⇔ ∑
k |λk| ≤ 1

Fig 3: Octahedron of unital qubit E.B.

Fig 4: Rounding of tetrahedron for fixed t = (0,0, t3) with t3 �= 0.
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Figure 3: The tetrahedron of bistochastic maps and its inversion through the origin (left);
their intersection gives the octahedron of unital entanglement breaking maps (right).

(Figures by K. Durstberger appeared in R.A. Bertlmann, H. Narnhofer and W. Thirring
“A Geometric Picture of Entanglement and Bell Inequalities” quant-ph/0111116. )



Figure 4: Tetrahedron of unital maps (left); and rounding of tetrahedron (right) which
occurs for t = (0, 0, t3) with t3 �= 0 in 3 param space of λk
(From Ruskai, Szarek and Werner)

In 12 parameter space of all qubit CPT maps, NO straight edges. .



Why are CQ only extreme points of qubit E.B. maps ?

Thm: For qubit CPT Φ either

(I) Φ generalized extreme point (RΦ unitary) OR

(II) Φ in interior of plane in convex set of all CPT.

⇒ No edges except for unital tetrahedron

Can show that if RΦ = V

(
cos θ1 0

0 cos θ2

)
W † is not unitary, then

it can be written in two distinct ways as conv comb of unitary

Note: Any contraction R (e.g., unitary U) defines a CPT Φ
via Φ(E12) = [Φ(E11)]

−1/2R[Φ(E22)]
−1/2

BUT (subtle point) not all U yield Φ in canonical form
even when convex comb is — need full 12 param space
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For qubit channels, the following are equivalent

A) Φ has the Holevo form Φ(P ) =
∑
k Rk Tr (PXk).

B) Φ is entanglement breaking.

C) Φ ◦ T is completely positive, where T (ρ) = ρT is the transpose.

D) Φ has “sign-change” property: changing any λk → −λk
in canon. param. yields another completely positive map.

E) Φ is in the convex hull of CQ maps.

For d > 2 have only (E) ⇒ (A) ⇔ (B) ⇒ (D) ⇒ Sjk ⇒ (C)

Erratum: Need to Replace (D) and Sjk conditions – See last slide
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For d > 2 (E) ⇒ (A) ⇔ (B) ⇒ (D) ⇒ Sjk ⇒ (C)

For d = 3 Shor found extreme E.B. channel which is not CQ
extreme point of E.B. which not extreme in all CPT

Do NOT expect Φ ◦ T C.P. ⇒ E.B. for d > 2 because there are
channels which break PPT entang., but preserve other types
indpe by (a) Horodecki’s and (b) Shor + subset of IBM group

Below is Not True !!

BUT Φ E.B. ⇒ stronger cond than Φ ◦ T is Comp Pos.

Let Sjk denote “selective transpose”, i.e.,
Sjk(A) swaps only particular ajk ↔ ajk

Then Φ E.B. ⇒ Φ ◦ Sjk also C.P. for every fixed {j, k}

BUT Sjk not even pos. preserving — can’t be entang. witness

Φ ◦ Sjk also C.P. is a very strong condition
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The claim that Φ Ent Break implies a “sign-change” conditons

is false for d > 2.

The point is that “sign-change” or “selective transpose”

preserves only the
∑
k Ek = I property,

but not the Ek > 0 property needed for a POVM

Instead we have only the much weaker statement that a C.P. map

Φ is Ent. Break ⇔ Φ ◦Υ is also C.P. ⇔ Υ ◦Φ is also C.P.

for any positivity preserving map Υ.

If we know a set of entanglement witnesses for the space on which

Φ acts, then it suffices to check the above for Υ in this set.
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