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Godl

To provide evidence that guantum error-correcting codes (QECCs) [or
standard algebraic QECCs = symplectic codes = stabilizer codes| work
reliably at positive rates in the presence of quantum noise, and to
determine the highest such rate, i.e., the quantum capacity, of the channel

In the spirit of Shannon.

Towards this goal, thistalk gives lower bounds on the capacity.
Especialy, | give the conditional capacity of the depolarizing channel on
symplectic (stabilizer) codes.

Talk is mainly based on MH (2002, quant-ph/0207113)




Remarks on Quantum Channel Coding

There are two major settings:

1. sending classical messages over noisy quantum channels

e classical capacity
Coding theorem exists. Holevo (1998), Schumacher and
Westmoreland (1997); additivity problem, King

2. protecting quantum states from quantum noise
= sending entanglement over noisy quantum channels
(Givesinsight into realization of quantum computers)

e (uantum capacity
Shor (this workshop!)




History

1.
2.
3.

Shor (1995) posed the problem of determining quantum capacity
Schumacher and Nielsen (1996), coherent information

Bennett et al. (1996) gave alower bound on capacity of general
binary quantum discrete memoryless channels (QDMCs);
argued with an entanglement purification protocol

. Shor and Smolin (1996) improved thisfor very noisy channels
. Preskill (1998) gave alower bound 1 — H (P) for Pauli channel with

probabilities P(s,t) of occurrence of o350l = X5Z%, s,t € {0,1};
used standard QECCs (symplectic or stabilizer codes)

. MH (IEEE IT, 2002) extended Preskill’s lower bound to general

QDMCs,
used symplectic codes;
not smaller than those previously known except Shor and Smolin’s




Quantum Channels

L(H") = theset of al linear operators on a Hilbert space H’

Completely positive (CP) map M : L(H") — L(H’) hasform
M(p) =S, M;pM], where M; € L(H').

Notation: M ~ {M;} <= M isspecified by {M;} inthisway

A guantum discrete memoryless channel (QDMC) isa
trace-preserving CP map (TPCP map) A : L(H) — L(H);
supposed to act as A®"(p) on p € L(H®™)

Assumption: dim H = d isa prime number




Quantum Capacity

e A (quantum) code = apair (C,, R, ) consisting of a subspace
C, C H®" andaTPCPlinear map R,, : L(H®") — L(H®")
(R.,: arecovery operator)

1 di "
Rate of code (C,,, R,) = 084 dim €

n

Fidelity (minimum fidelity)

F(Cr A) = min (6[R, o A" () (4]0

A number R > 0 issaid to be achievable on A if there exists a
sequence of codes {(C,,, R,,)} of rate not lessthan R such that
lim, F'(C,,A) =1

Q(A) = quantum capacity of A = sup{R | R isachievableon A}




Coherent Information

For adensity operator p € L(H') andaTPCPmap A" : L(H") — L(H’),
the coherent information I.(p, A’) is defined by

I(p, A') = S(A'(p)) — S([Id @ A'](|)(P])),

where S(o) denotes the von Neumann entropy of ¢, and |¥) € H” @ H’
Isapurification of p.

Upper bounds on Q(A):

Xn
e Q(A) < lim max Le(p, A7)

n—oo p n

(Barnum et al., 2000)

where the maximum is over all states on H®",

Xn
e Q(A) < lim max le(lle, A >,

n—oo C n

where 11 isthe projection onto C divided by dim C, and the
maximum is over all subspaces of H®™,

These two bounds are the same.




Weyl's Unitary Basis of L(H)

e {|0),1),...,]d—1)}: anarbitrary basisof H.  w : aprimitive d-th
root of unity. {0,...,d -1} =Z/dZ = F; X = F?

e Following H. Weyl (1928), define unitary operators X, Z € L(H) by

Xlj)=17-1), Zlj)=u]j), j€F

Note: {[i)} "% T 1137, then Z]3) = |j — 1)

o TheN = {N( ) = X°Z"} (5 1)ex iSan orthonormal basis of L(H)
(w.r.t. inner product (A, B) = d~'TrA'B).
e WeputN, = {Ny}rcxn, Where N, .y =Nz ®@...Q0 N,
N-channel

An N-channel isamemoryless channel A ~ {\/P(u)Ny }yecx, Where P
IS a probability distribution on X'. Also known as a Pauli channel.
Example: P(u) isuniform except « = (0,0) = depolarizing channel




L ower Bound on the Quantum Capacity

Theorem 1 For any N-channel, we have

KN
Q(A) > lim max Ie(lle, A >,

n—o00 CeS,, (N) n

where 1 i1sthe unit-trace operator proportional to the projection onto C
and S,,(N) isthe set of all symplectic (stabilizer) codes designed with N,,.

Remark. A symplectic code is a simultaneous elgenspace of a set of
commuting operators € N,,.

Cf. Upper bound

KXn
Q(A) < lim max L(le, A >,

n—oo C n

where the maximum is taken over all subspaces of H®™,




Remark 1. Conditional Capacity

e Imagine only acertain class T,, of subspaces of H®" are available as
guantum codes. In this situation, we consider the ‘ conditional

capacity’ Q(A|{T,}) of achannd A.

e Follows an upper bound on the conditional capacity

Xn
QAT }) < lim max 2cdie AT

n—oo CeT, n

for ageneral channel A.

e WhenS,, isthe set of all symplectic codes, the bound in Theoreml is
the conditional capacity Q(.A[{S.,}) of the depolarizing channel .A:

XN
Q(A[{S,}) = lim max Le(Ile, A )

n—oo CeS,, n




Remark 2. Superadditivity of Coherent Information

The lower bound in Theorem 1 is the supremum of b,, /n, where

b, = sup I.(Ilc, A®™), n=1,2,.... (1)
ceS,n(N)
Doesb,,/n > by hold for some n or not? Shor and Smolin numerically
demonstrated that b,, /n > b, for very noisy 2-dimensional depolarizing
channels. Recall that lim,, b/, /n, where

b;”L — Sup IC(HC7 A®n>7 (2)

C: subspace

Is an upper bound on the usual (unconditional) capacity Q(.A4). For the
erasure channel, lim,, b/, /n = b}, which isindeed the capacity.




Remark 3. Coset Arrays and Probability Arrays

e Thelower bound is the supremum of

IC(HCLaA(gm) o k— Hcond(PL)

n n

over al choicesfor L, where H.,,q(P;,) denotes the conditional
entropy of P;, to be specified later, the L isan [[n, k|| code, which
encodes £ quditsinto n qudits, Py, is determined from L and P

(A~ {V/P(u)Nu}).

e [:thel[l,1]] code = werecover the known lower bound 1 — H(P)

e [:the|[[n,1]] repetition code = we recover the Shor-Smolin bound

What is Hcond(PL)?




Symplectic (Stabilizer) Codes

e Symplectic inner product: For z = (u1,v1, ..., Un,vy) € F27,

y = (uy, vy, ... ul ) e F?, (,y)sp = 2?21 UV, — VU

e N,N, =w@¥s»N, N,

e A subspace L C F?" isself-orthogonal < L C L+, where
L+ ={yeF*"|VoeL,(x,y)s =0}
e Symplectic codes: Once a self-orthogonal code L C F?™
with dim L = n — k isobtained, we get S = d"—* subspaces
., HEn with dim ¢l = b
We can use any C(L” as a quantum symplectic code




Coset Array of L

Yo+ xo+ L Yo+xzi+L - Yo+ Tr-1+ L

Y1+ 2o + L y1+x1+ L - Y1 +Trx-1+ L

Yys—1+xo+L ys1+x1+L -+ ys1+Tx_1-+L,

where K = d?*, S = d"~%, {x;} isatransversal of the cosetsof L in L+
and {y;} isthat of the cosets of L+ in F?".

Each row form a coset of L+ in F2",

Cf. Standard array (of L) in coding theory




Tracing Errors Using Coset Arrays

F2n { } H®n

Assume an error N, z € F?™, occurs on code Cg)). Decompose z into

yo + L+ ¢y

ys_1+ L+ Cés_l)

z=w+y +x;, weEL.

Then, N, =aN,,N,,N,, ac¢€C.
e N, doesnothing, (hence, { Ny, }wer: stabilizer)
e N, movesany statein C}JO) toc'V, (syndrome 7 can be measured)

o N, dirsstatesin Cg), and its action is that of Pauli matrices (Weyl’'s
unitaries) for encoded (logical) qudits




Decoding Symplectic Codes

1:1
e erorz =error N,, F?*>2x <> N, €N,

e Design of adecoder = to choose aset J, of coset representatives of
cosets of L+ in F?.
For any such set J,, any Cg” IS .J-correcting, where
J=Jo+L={w+v|weLveJy}

E.g., Jisunionof|---

Yo + xo + L Yo +ax1+L| - Yo+ rx—1+ L
Y1+ o + L y1+x1+L - Y1+ Tr-1+ L

ys-1+xo+L ys1+x1+L - |ys—1+axx—1+L




Probability Array of L (d = 2)

Pr(0p_x,02:)  Pr(0p_p,0...01)
Pr(0...01,09;) Pr(0...01,0...01)

Pr(11...1,09;) Pr(11...1,0...01) --- Pr(11... 1)

Py (s,u) isthe probability of errors (vectors) in the corresponding coset:
Pr(s, %) = > ccoset(s,m) £ (). Row index s is syndrome.

e The conditional entropy H...q( Py, ) appearing the lower bound
\k — Heona(Pr)]/nis H(X|Y') where (Y, X)) isdrawn according to F;..

e Interpretation: the less average entropy of row is, the better code L is.

e Clearly, P"(Jy) < P™(J). Evaluating P™(.Jy) resultsin the old bound
1 — H(P), Bennett et al. ('96), Preskill ("98), MH (IEEE IT, 2002).




|deas for Proof of Theorem 1

e Concatenated code cat(L, Lo,t) (two-stage coding)
L: inner [[n, k]] code, L,t: outer code. Both are self-orthogonal

Theorem was proved with a random coding argument.
Namely, | proved VL, VA ~ {\/P(u)Ny }uex,

Z F<CC3t<L,Lout)7 A) Z 1 o eXpd[_mG(R7 P? L) —1_ 0<m>]
outEE

1
EP

where the ensemble E consists of all self-orthogonal codes over F
with fixed size, and C;, denotes a symplectic code associated with L.

Cf. Shor and Smolin restricted L to (concat. of) repetition codes.
e G(R,P,L) >0for R < I.(Il¢, , A®™) /n.

e | used the method of types from information theory.




|deas for Proof of Theorem 1 (Continued)

e Encoding with concatenated codes
block 1 ce block v

Encode by L: k qubitsinn | --- k qubitsinn

\ . 7
Ve

k < kv qubits are encoded by |[|x, kv]| outer code Lot

e Decoding
block 1 p block v

k qubitsin n k qubitsinn

measure
syndromes | s1 o 1 sy

Vs, (k qubits) | - | Vs (k qubits)

Varying channel V;, ® --- ® V,, for outer code

Conditioning of H.onq(Pr) in [k — Heona(Pr)]/n 1son syndrome s;




Remark 4. The Case of General Quantum Discrete Memoryless Channels

For achannel A ~ {A, }.cx, expand each A, intermsof basisN as
Ay =3, c v @uw Ny, u € X. Define a probability distribution P4 by

Pa(v) = lawl?, veX.
ueX

Then, we have

I (Mg, A®™
Q(A) > lim max (e, A7)
n—o0 CeS,, (N) n

AN

(u)Nu}uEX-

Proof. Roughly speaking, F'(C,.A) > F(C, .A) for any symplectic
(stabilizer) code C owing to the next lemma.




Reduction to Classical Coding Problem

Recall a self-orthogonal L and aset .J of coset representatives of L+
gives symplectic codesC'”,i =0,...,5 — 1.

Lemma (MH, IEEE IT, 02, quant-ph/0112103; based on Preskill, * 98).
For any such L, any such choice of J, and any memoryless channdl A, we
have

Z Fa(Cp)) < D Ph()

1=0 x&J
where P () = Pa((u1,v1)) - - Pa((un,vn)) for

T = (U, V1,...,Up, V) € F?™.

Remark. To prove the lower bound for general QDMCs, | used random
coding methods twice: E = {self-orthogonal L C F?"}, and
(€' ...c5Y c Heny.

Next gives example of b; while bound sup,, b,,/n is hard to evaluate
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of the amplitude-damping channel

f: MH, IEEE IT, 2002
g: Bennett et al., PRA, 1996

L ower bounds on the capacity {




Remark 5. Error Exponent

Let 'y, . (A®™) denote the highest fidelity of quantum [[m, ]] codes
used on aQDMC A. MH (quant-ph/0207113) has actually shown

L=y g (A®™) Sexpgl-m  sup  G(R, Pa, L) +o(m)],

m,Rm
L: self-orthogonal

I.e., that error exponent SUP[,: self-orthogonal G(R7 ﬁA? L) Is attainable.

Remark. “Error exponent E isattainable” means
1= F g (A®™) < expy[—mE + o(m)].

m,Rm
e Research problem: Determine the largest attainable error exponent
(reliability function).
The lower bound in the theorem follows from
k — Hcond(PL)

n

R < — G(R,P,L) > 0.




Simple Attainable Error Exponent
When L isthe[[1, 1]] code, G(R, P, L) becomes

E(R,P) = mén{D(QHP) + max{l — H(Q) — R,0}},

DPIQ) = Y Pla) log, 8H<@>=—Z$€XQ<x>1ogd@<x>,

the minimization is over all probability distributions () on
X =1{0,1,...,d—1}2.

Thus E(R, P,) is an attainable exponent for A
(MH, IEEE IT, 2002, quant-ph/0112103).

The lower bound 1 — H(P4) on the capacity follows from

R<1—-—H(P)=— E(R,P) > 0.
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Figure 1. Thefunction F(R, P) inthe case whered = 2 and P((0,0)) =
1 —p, P(u) = p/3foru # (0,0),u € X = {0,1}?, with p = 0.0075,
which applies to the depolarizing channel.







Conclusion

Thistalk presented alower bound on the quantum capacity which can be
achieved with symplectic codes and has a close relation to the known

upper bound written with coherent information.

Talk was mainly based on quant-ph/0207113




