The communication cost of entanglement transformations

Patrick Hayden and Sumit Daftuar(Caltech) Andreas Winter (Bristol)

Timely advice: Wim van Dam and Eric Rains

Outline

- Part I: Microscopic view (exact)
 [with Daftuar, work in progress]
- Part II: Asymptotic view (approximate)
 [with Winter, quant-ph/0204092]

A starting point

Paying the phone bill

$$|arphi_{AB}
angle \xrightarrow{LOCC} |\psi_{AB}
angle \qquad \Longleftrightarrow \qquad arphi_{A} \; \square \psi_{A}$$

log
$$n$$
 is the number of bits that need to be communicated (almost) (See Harrow & Lo 2002.)
$$\Leftrightarrow \varphi_A = \sum_{i=1}^n p_i U_i \psi_A U_i^*$$

spectrum: $p_i \lambda(\psi_A)$

Add up n matrices with spectra proportional to $\lambda(\psi_A)$. What are the possible sums?

HORN'S PROBLEM!

Horn's Problem

Given $\lambda(X)$, $\lambda(Y)$, $\lambda(Z)$ do there exist Hermitian matrices X, Y, Z such that X + Y + Z = 0?

Problem solved by:

Klyachko, Helmke, Rosenthal, Totaro, Knutson, Tao...

One consequence in this context:

All p_i may be taken to equal to 1/n.

$$\varphi_{A} = \sum_{i=1}^{n} p_{i} U_{i} \psi_{A} U_{i}^{*} = \frac{1}{n} \sum_{i=1}^{n} V_{i} \psi_{A} V_{i}^{*}$$

In physical terms, all measurement outcomes equiprobable in optimal (minimal communication) protocol.

A new source of revenue for WorldCom?

Simplified protocol

Simplified protocol

Essential question

How is $\lambda(\varphi_A)$ related to $\lambda(\varphi_{AC})$?

Inequalities

How is
$$\lambda(\varphi_A)$$
 related to $\lambda(\varphi_{AB})$?

The prototype:
$$\sum_{i=1}^{k} \lambda_{i}(\varphi_{A}) = \max_{V \in Gr_{k}(A)} Tr(\varphi_{A}P_{V})$$

$$= \max_{V \in Gr_{k}(A)} Tr(\varphi_{AB}P_{V \otimes B})$$

$$\leq \max_{V \in Gr_{kd_{B}}(A \otimes B)} Tr(\varphi_{AB}P_{V})$$

$$= \sum_{i=1}^{kd_{B}} \lambda_{i}(\varphi_{AB})$$

Key steps: 1) Variational principle for eigenvalues

2) Non-empty intersection

Variational principle...

Let F_i be the *i*-dimensional subspace of A corresponding to the *i* largest eigenvalues of φ_A .

 Π = 0010111001 a binary string of length dim(A)

Introduce the Schubert cycle

$$W_{\pi}(F) = \{ V \subseteq A : \dim(V \cap F_i) - \dim(V \cap F_{i-1}) \ge \pi(i) \}$$

Then [HZ]

$$\sum_{i} \pi(i) \lambda_{i}(\varphi_{A}) = \min_{V \in W_{\pi}(\varphi_{A})} \operatorname{Tr}(\varphi_{A} P_{V})$$

...plus intersections give inequalities

$$\sum_{i=1}^{d_{A}} \pi(i) \lambda_{i}(\varphi_{A}) + \sum_{i=1}^{d_{A}d_{B}} \mu(i) \lambda_{i}(-\varphi_{AB})$$

$$= \min_{\mathbf{V} \in \mathbf{W}_{\pi}(\varphi_{A})} \operatorname{Tr}(\varphi_{A}P_{V}) + \min_{\mathbf{V} \in \mathbf{W}_{\mu}(\varphi_{AB})} \operatorname{Tr}(-\varphi_{AB}P_{V})$$

$$= \min_{\mathbf{V} \in \mathbf{W}_{\pi}(\varphi_{A})} \operatorname{Tr}(\varphi_{AB}P_{V \otimes B}) + \min_{\mathbf{V} \in \mathbf{W}_{\mu}(\varphi_{AB})} \operatorname{Tr}(-\varphi_{AB}P_{V})$$

$$\leq \operatorname{Tr}((\varphi_{AB} - \varphi_{AB})P_{V_{0}}) = 0$$
If common choice possible

IF there exists
$$V_0 \in W_{\pi}(\phi_A) \otimes B \ \ ^{\psi} W_{\mu}(\phi_{AB})$$

Intersections can be studied using Schubert calculus

Finding intersections

$$W_{\pi}(F) = \{ V \subseteq A : \dim(V \cap F_i) - \dim(V \cap F_{i-1}) \ge \pi(i) \}$$

$$H_*(Gr_k(A)) = \langle [W_{\pi}(F)] \rangle$$

Ring structure in (co)homology: intersection pairing/cup product

$$l_B \left(\mathbf{W}_{\pi}(\boldsymbol{\varphi}_A) \right) \overset{\text{\tiny{W}}}{\smile} W_{\mu}(\boldsymbol{\varphi}_{AB}) \neq \varnothing$$
 if $l_* \left(\left[W_{\pi} \right] \right) \cdot \left[W_{\mu} \right] \neq 0$

Tricky to evaluate...

One version of the solution (Or another of the problem?)

Irreducible representations of S_n : V_{μ}

Another representation of S_n : $B^{\otimes n}$

Inequalities come from decomposition into irreps of: $V_{\mu}\otimes B^{\otimes n}$

Some mathematical context

Set of Hermitian matrices with fixed spectrum λ is a symplectic manifold O_{λ} .

U(A) acts on O_{λ}^{AB} by conjugation : $\varphi_{AB} \circlearrowleft (U \otimes I) \varphi_{AB}(U^* \otimes I)$

This is an example of a *Hamiltonian group action*. The partial trace over B is a *moment map* for this action. Thus, our problem is to describe the image of the symplectic manifold O_{λ}^{AB} under the moment map Tr_{B} .

Machinery exists: See, for example, "Coadjoint orbits, moment polytopes, and the Hilbert-Mumford criterion" By Berenstein and Sjamaar, math.sg/9810125.

Upshot: Inequalities derived by method of previous slides are sufficient.

A small example

Alice

A: qutrit

B: qubit

$$\varphi_{A} \qquad \varphi_{AB}$$

$$\widetilde{\lambda}_{1} \leq \lambda_{1} + \lambda_{2}$$

$$\widetilde{\lambda}_{3} \leq \lambda_{2} + \lambda_{3}$$

$$\widetilde{\lambda}_{1} \geq \lambda_{4} + \lambda_{5}$$

$$\widetilde{\lambda}_{3} \geq \lambda_{5} + \lambda_{6}$$

More simple cases

In these situations, the original prototype inequalities are *necessary* and *sufficient*:

$$\sum_{i=1}^k \lambda_i(\boldsymbol{\varphi}_A) \leq \sum_{i=1}^{kd_B} \lambda_i(\boldsymbol{\varphi}_{AB})$$

Conclusions: Part I

- Detailed description of those state transformations possible with limited communication is mathematically tractable
- Provides a link between quantum information theory and an area of active research in mathematics
- Other problems in QIT can likely be analyzed using similar tools

Back to the original problem

Protocol anatomy:

Qubits are better than bits

Simplified protocol

How to handle the final discard step?

Renyi entropy

Definition:
$$S_{\alpha}(\varphi) = \frac{1}{1-\alpha} \log \operatorname{Tr}(\varphi^{\alpha})$$

Properties: (1)
$$S_{\alpha}(\varphi)\langle \varphi|) = 0$$
 $S_{\alpha}(\frac{1}{d}I) = \log d$

(2)
$$S_{\alpha}(\varphi \otimes \rho) = S_{\alpha}(\varphi) + S_{\alpha}(\rho)$$

(3)
$$S_{\alpha}(\varphi_A) - \log \dim B \le S_{\alpha}(\varphi_{AB}) \le S_{\alpha}(\varphi_A) + \log \dim B$$

(4)
$$\alpha \le \beta \Rightarrow S_{\alpha}(\varphi) \ge S_{\beta}(\varphi)$$
 [0204093]

Keep track of:
$$\Delta(\varphi) = S_0(\varphi) - S_\infty(\varphi)$$

Renyi entropy and spectral fluctuations

Definition:
$$S_{\alpha}(\varphi) = \frac{1}{1-\alpha} \log \operatorname{Tr}(\varphi^{\alpha})$$

Properties: (1)
$$S_{\alpha}(|\varphi\rangle\langle\varphi|) = 0$$
 $S_{\alpha}(\frac{1}{d}I) = \log d$

(2)
$$S_{\alpha}(\varphi \otimes \rho) = S_{\alpha}(\varphi) + S_{\alpha}(\rho)$$

(3)
$$S_{\alpha}(\varphi_A) - \log \dim B \le S_{\alpha}(\varphi_{AB}) \le S_{\alpha}(\varphi_A) + \log \dim B$$

$$(4) \quad \alpha \le \beta \Rightarrow S_{\alpha}(\varphi) \ge S_{\beta}(\varphi)$$

Keep track of:
$$\Delta(\varphi) = S_0(\varphi) - S_{\infty}(\varphi) \ge 0$$

$$\Delta(\varphi_A)$$
 – 2log dim $B \le \Delta(\varphi_{AB}) \le \Delta(\varphi_A)$ + 2log dim B

$$\Delta(\varphi \otimes \rho) = \Delta(\varphi) + \Delta(\rho) \ge \Delta(\varphi)$$

$$\Delta(|\varphi\rangle\langle\varphi|) = \Delta(\frac{1}{d}I) = 0$$

Theorem:

Starting from the state $|\varphi_{AB}\rangle$, if Alice and Bob perform local operations and exchange at most n qubits (or bits) of communication to create $|\psi_{AB}\rangle$, then $\Delta(\psi_A) - \Delta(\varphi_A) \leq 2n$.

What's this good for?

Entanglement concentration: [BBPS]

$$|\varphi_{AB}\rangle^{\otimes n} \xrightarrow{LO} \approx |\Phi_{+}\rangle^{\otimes n(S(\varphi_{A})-\varepsilon)}$$

Entanglement dilution:

$$|\Phi_{+}\rangle^{\otimes n(S(\varphi_{A})+\varepsilon)} \xrightarrow{LOCC} \approx |\varphi_{AB}\rangle^{\otimes n}$$

$$\Delta \left(\Phi_{+}^{A} \right) = 0$$

$$\widetilde{\Delta}(\varphi_A^{\otimes_n}) \sim \sqrt{n}$$

Best known protocol consumes $O(n^{1/2})$ bits of communication [LP]

Theorem: Any protocol for producing a high-fidelity copy of $|\phi_{AB}\rangle^{\otimes n}$ from EPR pairs requires $\Omega(n^{1/2})$ bits (or even qubits) of communication. [Hayden-Winter, Harrow-Lo]

Conclusions

- Asymptotic, pure state LOCC entanglement transformations require $\Omega(n^{1/2})$ bits of communication
- Fundamental asymmetry between concentration and dilution due to fluctuations
- General open problem: Bridge the gap between exact and asymptotic techniques!