

Quantum Key Distribution with Continuous Variables – beating the 3 dB loss limit

Christine Silberhorn, Gerd Leuchs

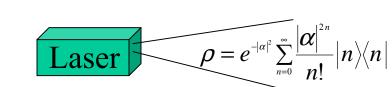
Quantum Information Processing Group Norbert Lütkenhaus Quantum Information Theory Group Center of Modern Optics

University of Erlangen-Nürnberg

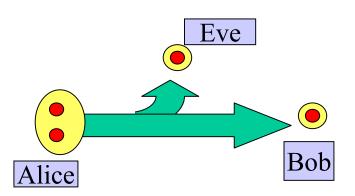
Timothy C. Ralph University of Queensland, Brisbane

- losses & QKD: BB84 with weak coherent pulses
- ideas for better performance
- classical information theory background
- postselection in continuous variable schemes: beating the 3 dB loss limit

Realistic Signals and Loss (BB84)



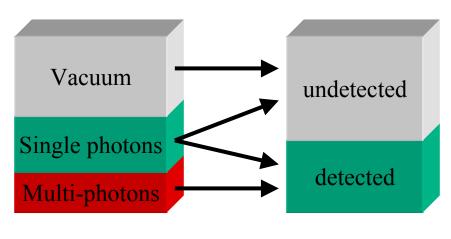
Multi-photon signals



- → Several copies of signal state
- \rightarrow Eve can single out a copy
- →No errors are caused

→ Delayed measurement gives full information to Eve

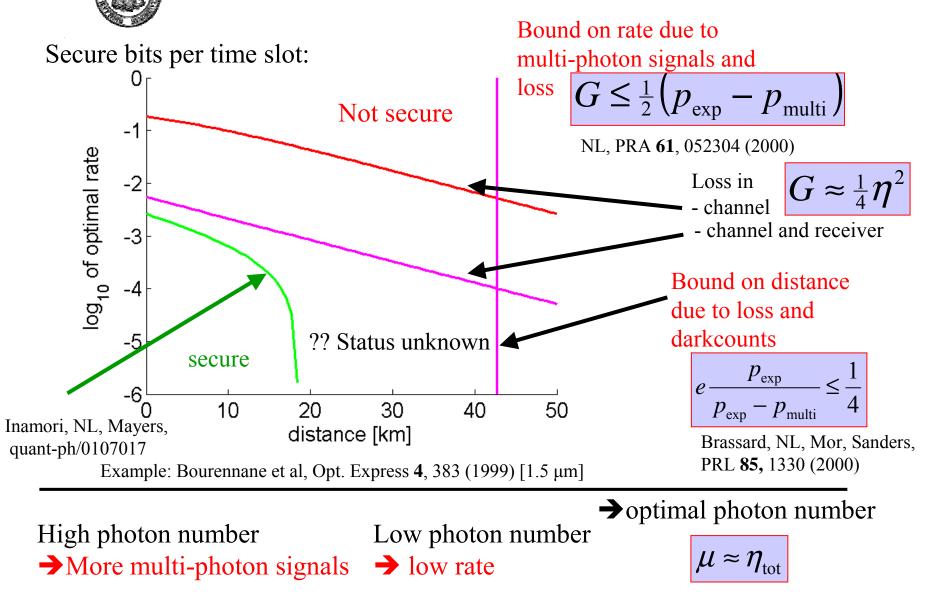
Blocking Signals



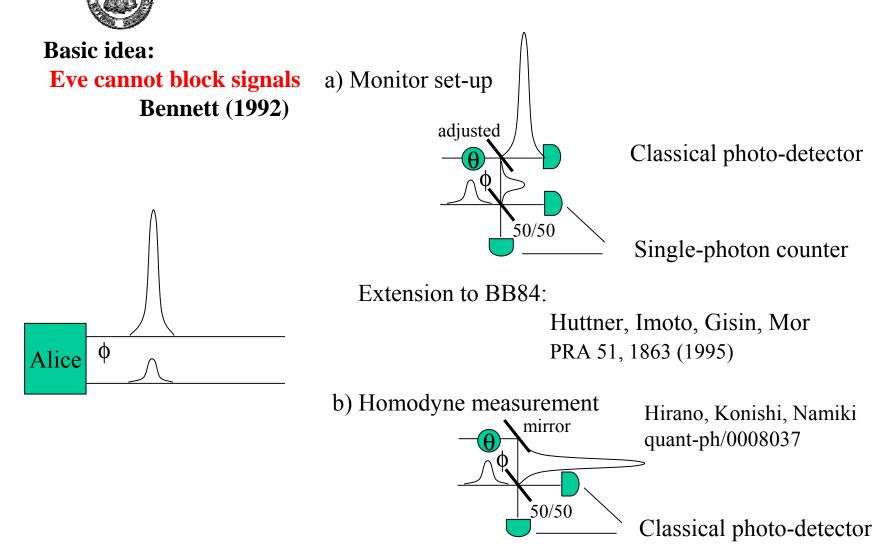
$$G \leq \frac{1}{2} (p_{\exp} - p_{\text{multi}})$$

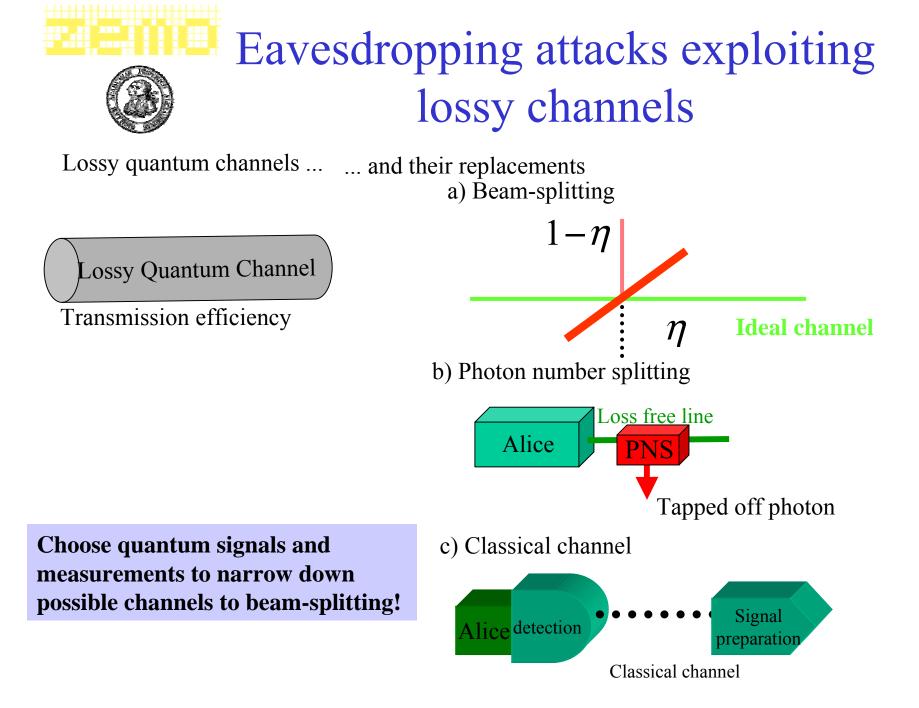
 P_{exp} Detection probability of apparatus P_{multi} Multi-photon probability of source

WCP security for BB84 protocol



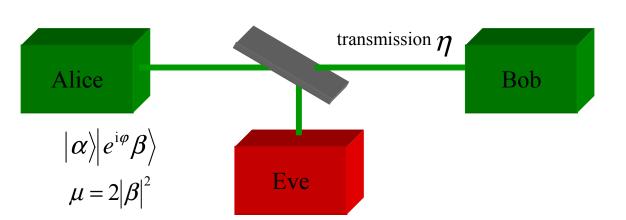
Strong reference pulse schemes

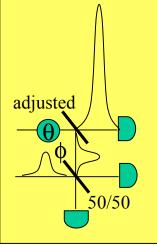




single photon BB84

 $G \approx \frac{1}{2}\eta$





Example: $p_{exp} = 1 - e^{-\eta\mu}$ (weak laser pulses) $p_{split} = (1 - e^{-\eta\mu})(1 - e^{-(1-\eta)\mu})$ Gain rate positive for all values of μ and η ! \Rightarrow optimal choice is $\mu \approx 1$ $\Rightarrow \quad G \approx \frac{1}{2}\eta$

Comparison:

tandard WCP BB8
$$G \approx \frac{1}{2}\eta^2$$

Potential for Continuous Variable QKD

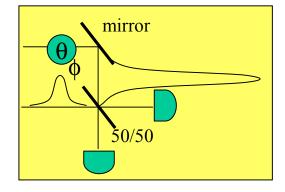
Properties of continuous variable QKD

•Source (strong laser pulses) -unconditional

-fast (THz)

•Detection (intensity) -Highest rates (> 10 Gb/s)

-high efficiency (>>90%)



Open problems:

- efficient protocols for high losses??
- full security protocols (but Gottesman/Preskill)

Basic Model of QKD protocols

a) Quantum part makes available

- 1
- knowledge of signal states $\{\rho_i\}_i$ knowledge of generalised measurement $\{F_k\}_k$ 2.
- (via public communication) joint probability distributions Pr(i,k)3.

b) Classical processing

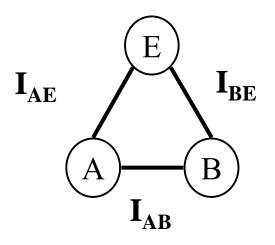
Use quantum mechanics to infer possible distributions $P(I_A, K_B, \rho_E)$ 1. between the three parties:

Alice (signals),

Bob (measurements),

Eve (auxiliary quantum system)

Use classical tools (e.g. error correction, privacy amplification) to 2. generate secret key.



Joint probability distribution

P(A, B, E)

Key extraction from correlated classical data

Bounds on secrecy capacity C_S

U. M. Maurer, IEEE Trans. Inf. Theo. 39, 1733 (1993);

$$C_{S} \leq I_{AB\downarrow E}$$

intrinsic information: mutual information A-B given all possible public announcements by E

Csiszar, Körner, IEEE, IT 24, 339 (1978).

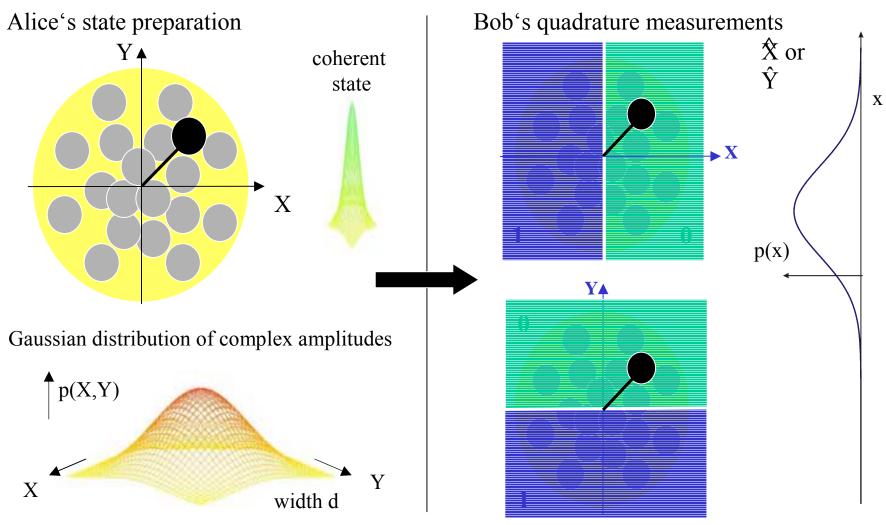
 $C_S > max \{I_{AB} - I_{AE}, I_{AB} - I_{BE}\}$

biggest information gap

→ secrecy capacity of entanglement breaking channel vanishes! $p(a,b,e) = p(a)p(e \mid a)p(b \mid e)$ $= p(e)p(a \mid e)p(b \mid e)$ $\Rightarrow p(a,b \mid e) = p(a \mid e)p(b \mid e) \Rightarrow I_{AB \mid E} = 0$

QKD with coherent states

F. Grosshans, P. Grangier, Phys. Rev. Lett. 88, 057902 (2002).



Implicit assumption: phase reference available to all parties!

Beam-splitting beyond 3 dB loss???

 $1-\eta$

 $\eta < \frac{1}{2}$

η

Ideal channel

Eve receives better signals than Bob

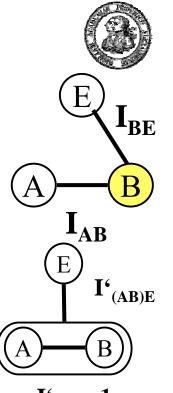
 $I_{AE} > I_{AB}$

 $I_{AE} > I_{AB} \ge I_{BE}$

beamsplitter does not entangle coherent state input:

$$\begin{aligned} \left| \alpha \right\rangle_{S} \left| 0 \right\rangle_{E} \rightarrow \left| \sqrt{\eta} \; \alpha \right\rangle_{S} \left| \sqrt{1 - \eta} \; \alpha \right\rangle_{E} \\ I(B; E) &\leq I(A, B; E) = I(A; E) + I(B; E \mid A) \\ \Rightarrow I_{AE} &\geq I_{BE} \\ I(B; E) &\leq I(B; A, E) = I(A; B) + I(B; E \mid A) \\ \Rightarrow I_{AB} &\geq I_{BE} \end{aligned}$$

detection of information gap: $I_{AB} \ge I_{BE}$ Grosshans, Grangier, quant-ph/0204127)



Attaining Csiszar-Körner Bound

- 1) Bob's bit string defines key
- 2) Amount of required classical communication $\mathbf{B} \rightarrow \mathbf{A}$ to allow Alice to correct her errors: $(1-\mathbf{I}_{AB})$ bits
- 3) Change of Eve's relevant information [C. Cachin, U.M. Maurer, IEEE Trans. Inf. Theo. 39, 1733 (1993).] $I_{BE} \rightarrow I'_{(AB)E} < I_{BE} + (1 - I_{AB}) = 1 - (I_{AB} - I_{BE})$ $I_{AB} > I_{BE}$ 4) Privacy amplification: $C_{S} = 1 - \tau = 1 - I'_{(AB)E}$

Shorten key by fraction τ

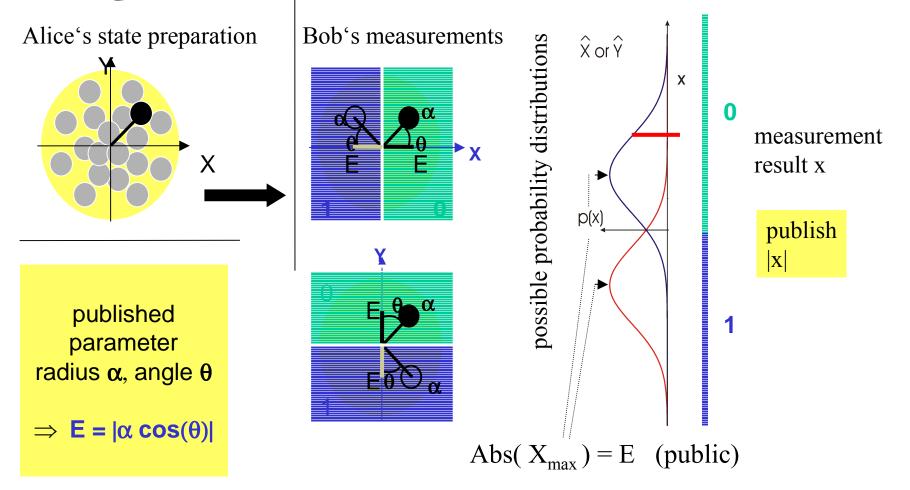
 $I_{AB}^{\prime} = 1$

Requires one-way error correction → not efficient??

Other error correction methods:

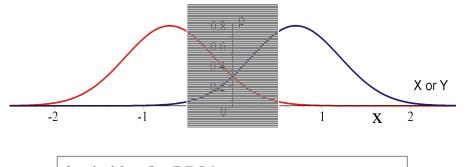
$$I_{AE} \rightarrow I'_{(AB)E} < \begin{cases} 1 - (I_{AB} - I_{AE}) & A \rightarrow B \\ 1 - (I_{AB} - I_{AE}) & A \leftarrow B \\ 1 - (I_{AB} - I_{AE}) & A \leftarrow B \\ 1 - (I_{AB} - I_{AE}) & A \leftarrow B \\ 1 - (I_{AB} - I_{AE}) & A \leftarrow B \\ (special case) & here: \\ (special case) & not change in our cont. var. protocol! \end{cases}$$

Quantum key distribution with coherent states: modified protocol



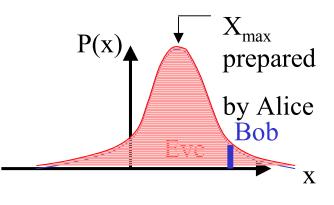
Effective mix of channels, each described by (E,|x|)

Post-selection for continuous Variables



basic idea for BB84 for weak signal and strong reference pulse

T. Hirano, T.Konishi, and R.Namiki, quant-ph/0008037 (2000). Product states for Bob and Eve:



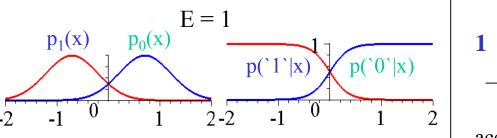
divide overall information into different information channels:

known parameters: state preparation: $E = a \cos \theta$ measurement result: |x| $I^{tot} = \int_{|x|,E} p(|x|,E) I(|x|,E) d |x| dE$

> select information channels with $I_{AB}(|x|,E) > I_{AE}(|x|,E)$

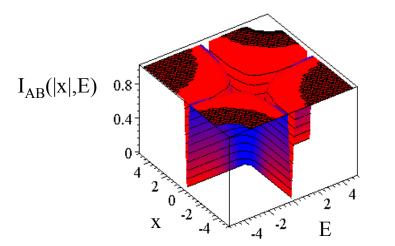
Mutual Information of Communicating Parties

Mutual information of Alice and Bob

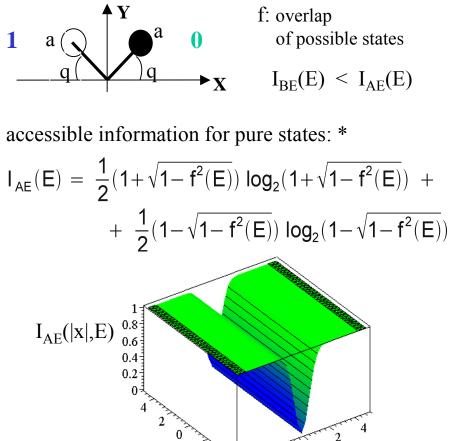


Shannon formula:

 $I_{AB}(x|,E) = 1 + p_e \log_2 p_e + (1 - p_e) \log_2(1 - p_e)$



Eve's accessible information



'n

E

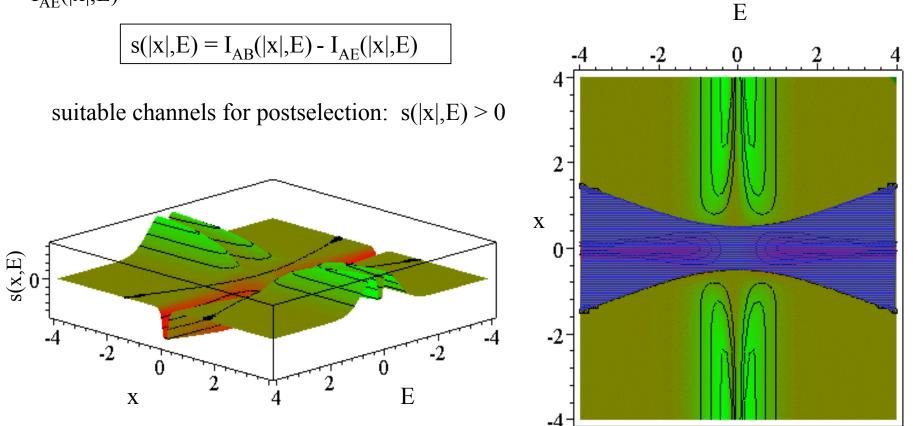
-2

* L.B. Levitin (QCM 1995)

Х

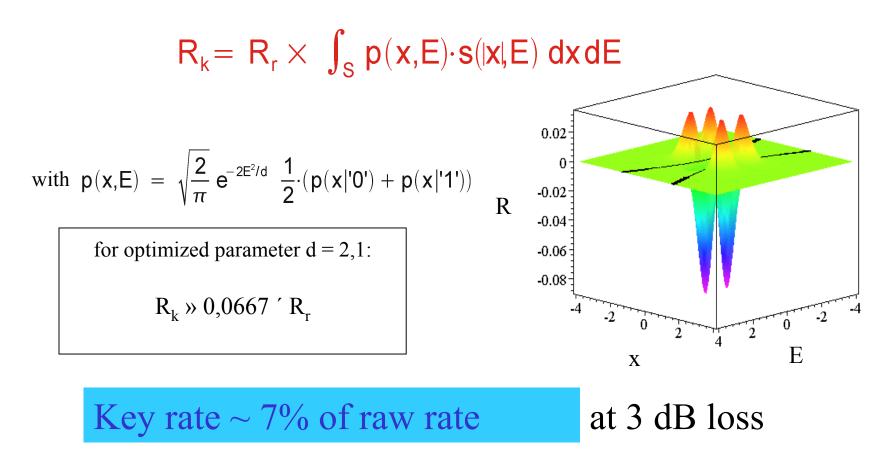
Selection of suitable channels

Comparison of the mutual information $I_{AB}(|\boldsymbol{x}|,E)$ and $I_{AE}(|\boldsymbol{x}|,E)$



Estimate of bit rates

selected channels: $S = \{(x, E) \in \mathbb{R}^2 | s(x, E) > 0\}$



Not optimized over distribution of coherent states ... Maybe- only four states???? (enough to restrict to beamsplitting????)

Conclusions

• QKD with weak laser pulses unconditionally secure (BB84),

rate scales as $G \approx \frac{1}{2}\eta^2$

- BB84 with strong reference pulse: expect $G \approx \frac{1}{2}\eta$
- single photon detection slow \rightarrow continuous variable QKD (fast detection)
- coherent state QKD with practical schemes (two-way error correction)

without apparent loss limit

(no rigerous security proof yet)

- rate needs optimization of protocol
- improvement for squeezed and entangled states? see D. Gottesman, J. Preskill, PRA 63, 022309 (2001)

Need clean analysis of optimal protocols based on basic correlations from prepare&measure scheme in QKD!