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Motivation

Relationship between entanglement and non-
locality is poorly understood. (Do any bound
entangled states violate a Bell inequality?)

s there some general structure to local hidden
variable theories?

Are there algorithms that can construct local
hidden variable theories for quantum states?




Bell Experiment

lAlice and Bob make measurements in distant laboratories.

Shared randomness.
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The outcomes of Alice’s measurements are unaffected by
Bob'’s choice of setting.




Bell Experiment: Deterministic

Shared mMnNess.
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Each of Alice’s measurements has some outcome with probability one,
independent of the measurement made by Bob.
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Bell Experiment Il

Shared randomness.




Bell Experiment: Quantum

Quantum State.
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Each measurement is described by a POVM.
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" Strategy”

No Bell inequality violations if different POVMs commute or if
Bob only has one setting.

Try to replace p by another state for which LHV is obvious and

})ij,k! (p) = Pz’j,kz (b)

Extensions of p fit the bill if
they are suitably symmetric.

5 2 09 [t 4®5a-! [ﬁ] = p  Extension for p

o PR = P Whichever spaces are
traced over.




Local Hidden Variable Theory

Reproduces the measurement probabilities of a quantum
mechanical Bell experiment as a convex combination of
the deterministic classical outcomes.
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If this is not possible the state violates some Bell inequality
for this number of settings. Entanglement is necessary for
such a violation.




Extensions and LHVs

If p has a (s,1)-symmetric extension then it does not violate
a Bell inequality for s settings for Alice and any number of
settings for Bob.

Imaginary Bell experiment: Alice and Bob share p and
Alice performs each of her POVMs on a different one of her

copies of system A. (Essentially only a single POVM)
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Quasi-Extensions and LHVs

Checking the LHV just requires verifying the equality

TrE/®Elp=> p..QE Ep} p)Br

This holds as a result of the partial trace and symmetry
properties of © and the normalization of the POVMs.

Positivity of P only serves to guarantee positivity of the
probabilities. So in fact we only need

(TrEZ ®E”, p)=0

D only needs to be positive on product states: quasi-
extension H




Comments

Result works for all POVMs (not just projective
measurements) and any number of measurement
outcomes for each setting.

Since all separable states have symmetric extensions there
is an LHV of this kind for every Bell experiment on every
separable state.

Many entangled states (PPT and NPT) have (1,s)-
symmetric quasi-extensions for small s (only). (e.g. real
UPB states, Werner states.)

There must be other kinds of LHV theories that are relevant
for entangled states. (Result of Werner.)




Some Physical Insight

If two systems are highly entangled they are less able to be
entangled with other systems. (Monogamy of entanglement)

On the other hand separable states can be shared out as
much as you like.

pis separable o= p,lw. ) v, ®|4)4
Consider the state
p = Zpi( Wi><wi )®s ®(¢z><¢l )

State of any copy of Aand B is p

Existence of symmetric extension is a
weak kind of separability criterion.




Constructing Symmetric Extensions

This problem can be cast as a semidefinite program.

Partial trace condition TrSym(X ®1)p=TrXp VX

Expand in basis for matrices X = Zx,.O'l. Tro0, =9,

i=0

Just consider basis elements TrSym(c, ®1)p=Tro,p Vi

minimize Trp
subjectto TrSym(o, ®I)p=Tro,p Vi
020
Extension exists if 1
SymZ =— 74
optimum less than one. 4 Sa!;xp %




Semidefinite Programs

Primal

Dual

-t T
minimize C W

subject to F +Zw,.F_ > (] | subject to Tr[EW]: o

maximize —Tr[FOW]

W =0

If conditions can be satisfied problem is feasible

c

Minimize linear function over intersection
of affine subspace with cone of positive

matrices.

Large class of convex optimizations.

e.g. minimize sum of largest r eigenvalues

(separability, distillation Rains, CPM optimization Audenaert De Moor)
Excellent numerical methods available.




Semidefinite Programming Duality I

A nice sub-class of problems are termed strictly feasible.

If there is a feasible point W, W such that
F(w)>0,W >0

then the primal and dual optimal values are the same
and there is a point w", ¥/ attaining these values.

Numerical methods tend to attempt to minimize the
difference between the two optimal values (duality gap).

For the strictly feasible case we are guaranteed ‘certificates’
of optimality as well as points attaining the optimum.




Semidefinite Programming Duality

Consider a feasib‘le point w, W

cTw+Te[F W)=Y Tt[FW w, + Tr[ 7]
=Tr[F(w)W |> 0

So for feasible points

c"w>-Tt[E W]

Constraints guarantee that feasible primal values bound
dual optimum and vice versa.




Dual Problem

The optimization dual to the one that constructs
extensions searches for an entanglement witness.

maximize 1-Tr Zp
subject to Sym(Z ®1)>0

If optimum is greater than one (no extension
exists) Z is an entanglement witness.

As a test for entanglement this is neither weaker
nor stronger than partial transpose criterion.

Fewer variables means easier to deal with
analytically.




Results

Tested on many examples of bound entangled states in
H, OH,

Computation scales at worst like (d2***)d3)

Bound entangled states taken from:

Horodecki 1999, Bennett ef al. 1999
Horodecki, Lewenstein 2000,
Bruss, Peres 1999

Analytically extensions exist for real UPB states and
s=2, and Werner states for s<d.




Summary and Outlook

Described a method of constructing local hidden
variable theories for quantum states that works for all
separable states and some entangled ones.

Construction works for a fixed number of settings for
Alice (say) but for any POVMs with any number of
outcomes.

Numerically and analytically tractable since a
semidefinite program.

Other kinds of local hidden variable exist (Werner).
Perhaps it would be fruitful to find a more complete
characterization of LHV theories.



