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• Why composability in quantum cryptography: few 
examples including Relativistic Bit Commitment. 

• Real and Ideal Models for Universal Security
Definition and Universal Composability (adapted to the 
quantum world). 

• Universal Composability Theorem 

• Connection with an achievable security definition for 
bit commitment (the one obtained with relativistic
protocols and other protocols). 



• One time pad on top of KD [Shannon] versus QKD [Mayers 96, 
and others]. 

• Oblivious Transfer on top of (ideal ) Bit Commitment [Yao 95] 
versus computationally secure quantum bit commitment [Dumais, 
Mayers, Salvail, 2000].  

• Weak Bit Commitment on top of Coin Flipping [Ahoronov, 
Tashma, Vazirani, Yao, 1999] [Kent and Hardi, 1999] versus 
Ambainis protocol for coin flipping.  

• Bit Commitment with equality on top of ordinary bit commitment 
[Rudich, Bennett] [Kent 1999]  versus Temporary Relativistic Bit 
Commitment [Mayers 2002].  (Our running example)





Concealing: The blob Ψ give no information about b to Bob. 

Binding: Alice cannot change her mind.
Etc…. (Clarifying this etc.  is part of the problem).  

b Ψ

Alice Bob



Temporary Relativistic Bit Commitment is a relativistic variation 
on the two-prover protocol of Ben-Or, Goldwasser, Kilian and 
Wigderson (1988). 

The relativistic variation was analysed by Brassard, Crépeau, 
Mayers and Salvail (1998) to show that it was not a permanent bit 
commitment. 

Kent`s salient idea (1999) was to realise that it can be used as a 
building block for bit commitment with equality (Brassard, 
Crépeau) and (Bennett, Rudich).  So, we can sustain the 
commitment by proving equality with a fresh one. 
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Initial Setting: AC and AO share a random string X ∈ R { 0,1}m

and move at distant locations. BC and BO share a random string 
R ∈ R {0,1}m and move close to AC and AO, respectively. 

Commit(w):
BC sends R to AC

AC sends T = [X, X ⊕ R](w) back to BC 

BC  notes the time of receipt and forwards T to BO 

Opening: 
AO announces X and w to BO 

BO notes the time of receipt and checks (1) [X, X ⊕ R](w) = T 
and (2) the two receipts are space-like separated events. 
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The concealing condition is easy! Let us consider 
the binding condition. 
Let Pw, w ∈ R { 0,1, ⊥ }, be the measurement that 
corresponds to Bob`s opening. Let C be a commit 
circuit and U and U` be two opening circuits, and
US = U`U†.  

We can obtain the following binding condition:  
(∀ C)(∀ U)(∀ US)

|| P1USP0UC |init� ||2 ≤ 2-m



US

R
ρ

C O

The  TBC Game

C2

O

R
ρ

C O

C

O

C1

As Space like 
separated events

P[0] P[1]

Accepts if 
T ⊕ X = 0

Accepts if 
T ⊕ R ⊕ X = 0

Y/N Y/N

U

Useful event in 
partitionning of circuits



R
ρ

C O

The  First Modified TBC Game

'
O

R
ρ

C

O C1 US P[0]
P[1]

Accepts if 
T ⊕ X = 0

Accepts if 
T ⊕ R ⊕ X' = 0

Y/N Y/N

O

C

L

|0����

U

C2



L

R
ρ

CO

The  Second Modified TBC Game

C2

'
O

R
ρ

C

O C1 US P[0]

P'[1]

Y/N

Y/N

O

Accepts if 
X ⊕ R ⊕ X' = 0

OC

Accepts if 
T ⊕ X = 0

U



We can obtain the same binding condition 
with a completely different bit commitment 
protocol based on any quantum one-way 
permutation (Dumais, Mayers, Salvail 2000). 

|| P1USP0UC |init� ||2 ≤ α



The issue of composability is important in standard cryptography 
and was progressively addressed in the last 10 years! 

Canetti`s work sumarize these 10 years.  

The techniques currently used for classical composability can be 
useful to built a theory of quantum composability.   





A universal security definition is a relation 
of the form ¨Π securely realises F¨ where 
Π is any real protocol and F is any ideal 
functionality. The ideal functionality F is 
part of an ideal protocol also denoted F.   
We will be more precise later.



For every real adversary A against the real 
protocol Π, there must exist an ideal 
adversary S (also called a simulator) against 
the ideal protocol F, such that no 
environment Z can distinguish  between ΠA

(the real protocol Π corrupted by the real 
adversary A) and FS (the ideal protocol F 
corrupted by the ideal adversary S). 



Notation. We denote ΠF a protocol Π that calls an ideal 
protocol F.  If ρ provides the same I/O interface as F, Πρ is the 
same protocol but calls ρ instead of  F. We denote F(m) the 
ideal functionality that can run up to m invocations of the ideal 
functionality F.   We denote ρ(m) the protocol that can run up to 
m invocations of the protocol ρ.  No global synchronisation, 
except in between partners in the relativistic scenario.

A universal security definition is composable if:

(1) If ΠF securely realises G and ρ securely realises F, then Πρ

securely realises G.  
(2) If ρ securely realises F, then ρ(m) securely realises F(m) . 





Program i Program jInternal 
communication

InputOutput InputOutput

A quantum protocol  is a collection of circuits regrouped in 
disjoint sets called programs together with channels for internal 
communication and for communication with the environment. 
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• Registers are sent trough communication channels that
respect assumptions (e.g., private or not, authenticated or 
not, etc.) We consider that these channels and assumptions 
are part of the definition of the protocol. 

• Circuits are automatically activated when all the required 
registers are received (but transmission can be delayed in a 
relativistic scenario).

• All internal channels pass trough the adversary

• Every program runs at a different location which is 
important in a relativistic scenario.



The communication structure of a protocol determines two 
layers: the functional and the internal layers.   The functional
layer is defined by the relationship between the input and 
output registers of the protocol.   It`s the protocol as seen by
the environment. 

The internal layer is defined by the circuits and the 
incoming and outgoing communication channels of the
protocol.  It`s the mean by which the functionality layer is 
realised.  
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An ideal protocol is simply a special case of a real protocol. 

The functionality layer is defined by the relationship between the
inputs and the outputs of the dummy parties.  This relationship is
in turn determined by the internal layer which is the ideal 
functionality F and the communication between the dummy parties 
and F.  



The ideal 
Bit Commitment

Functionality

b

Open b

1- Upon receiving (Commit, sid, Alice, Bob, b) from Alice, send 
(Receipt, sid, Alice, Bob) to Bob.   (Ignore any subsequent Commit 
messages.)

2- Upon receiving a value (Open, sid, Alice, Bob) proceed as 
follows: if a previous (Commit, sid, Alice, Bob, b) was received 
from Alice, send (Open, sid, Alice, Bob, b) to Bob.  Otherwise, do 
nothing. 



Π A
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Free
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The adversary A replaces the 
corrupted programs.  Moreover, 
all internal communications in Π
pass trough the adversary A.  

Bit Z(ΠA)

The ideal model has 
the same structure, 
but Π is replaced by
F and A by S.

Contains only the 
non corrupted 
programs.



A more secure ideal protocol provides a stronger (more secure) 
definition of security. The strongest definition will state that no 
party can be corrupted in the ideal protocol and it will use ideal 
channels with guarantee of delivery, etc. The problem, of 
course, is to find protocols that achieve this level of security and
I guess that it is impossible.   So, a trade off is neccessary.

Example:  the ideal internal channels offer no guarantee of 
delivery because the real channels can be jammed.   
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Recall that the environment Z acts as a distinguisher.  It must 
challenge the simulator S.  To do so, it must obtain as much as 
possible about the internal layer from the real adversary A and 
give as little as possible to the simulator S. 

The worst case real adversary (to challenge the simulator S) is the 
dummy adversary Ã which simply accepts to follow any of the 
following requests from the environment:

1- forward any new outgoing message in the protocol to the 
environment 
2- corrupt a new party (if allowed by the access rule) and pass the 
information to the environment 
3- deliver a message chosen by the environment to a party also 
chosen by the environment. 



For any two random binary variables Y, Y` let us write 

Y ≈e Y`      if      | Pr( Y = 0  )  - Pr( Y` = 0 )| ≤ e. . 
Let PP be the set of all polynomial functions.

Definition. A protocol Π for an ideal functionality F is secure, if 
for any environment Z there exists a simulator  S  such that 
(∀ d ∈ P)P) (∃ k0 ∈ℵ )(∀ k > k0)

Z(Π) ≈e Z(FS)
where e = 1/d(k).  Moreover, thethe simulatorsimulator S must have a 
polynomial complexity c ∈ PP that depends only on Π, and k0 can 
only depend on d and on the polynomial complexity c, c` ∈ PP of
S and Z,  not on the actual circuits.  





Let Π be an environment that calls an I/O interface shared by an 
ideal protocol F and a real protocol ρ.  

Lemma 1. If ρ securely realizes F and ΠF securely realises G,  then
Πρ securely realises G.

Lemma 2. If ρ securely realizes F, then, (∀ m ∈ PP), ρ(m) securely 
realizes F(m).

Note: Lemma 1 and 2 can be combined to obtain: (∀ m ∈ PP), if ρ
securely realizes F and ΠF(m) securely realises G, then Πρ(m)

securely realises G. 



There are three steps in the proof. 

(1) Essentially, we must construct a simulator S(Πρ) for Πρ

given the simulators S(ΠF) for ΠF and S(ρ) for ρ.

(2) We must show that the size of the simulator S(Πρ) is a 
polynome that depends only on the protocol Πρ.

(3) We must show that the lower bound k0 for k depends only on 
the polynome d (for the indistinguishability) and on the 
complexity of the circuits Z and S, not on the actual circuits.   



The line of argument is the following.  
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Different views on 
the same process[Z ∪ S(ρ)](GS(ΠF ) ) = Z(GS(Πρ ) ).

This is (2)[Z ∪ S(ρ)]( ΠF) ≈1/(2d(k)) [Z ∪ S(ρ)](GS(ΠF ) ) 

Different views on 
the same process[Z ∪ Π ](FS(ρ)) = [Z ∪ S(ρ)](ΠF)

This is (1)[Z ∪ Π ](ρ) ≈1/(2d(k)) [Z ∪ Π ](FS(ρ))

Different views on 
the same processZ(Πρ) = [Z ∪ Π ](ρ)

This concludes the proof! (See next slides for details)
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D: [Z ∪ S(ρ)]( ΠF) ≈1/(2d(k)) [Z ∪ S(ρ)](GS(ΠF ) )
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How can we use the binding condition 

|| P1USP0UC |init� ||2 ≤ α



We recall that when Alice is corrupted the 
simulator must extract the bit in the commit phase:

Real internal
communication
to commit

Dummy Bob

receipt receipt



|| P1 USP0UC |init� ||2 ≤ α
�

||�init| C† U`† P1 U`  U†P0UC |init� ||2 ≤ α





The alternative ideal adversary is the same except that it contains an 
extra circuit with the following properties:

1- on request, it receives all registers, except the ``input´´ registers of 
Z,   execute a measurement and sends these registers back to the
programs and the environment, and

2- for any fixed value of the honest input or output in the protocol 
analysed (e.g. the bit that is open by Bob when Alice is corrupted), 
this measurement does not disturb the state of the entire application 
protocol. 

Any register in the environment which is only used as a source qbit 
in CNOT gates (no rotation and never the target of a CNOT) is an 
``input´´ register. 





CT
Alice commits a bit A∈ R{0, 1}
Bob announces B ∈ R {0, 1}
Alice opens A
Alice and Bob compute A ⊕ B

Alice cannot create a bias on A ⊕ B because she does not know 
B when she picks A.  Similarly, Bob cannot create a bias because 
he does not know A when he picks B.



Aharonov, Ta-Shma, Vazirani and Yao (1999) and independently 
Kent and Hardi (1999)  proposed Weak Bit Commitment.  
Intuitively, in a weak bit commitment no participant can cheat 
without running a chance to be detected.  

Spekkens (2002) proposed Cheat Sensitive Coin Tossing. If the 
cheater creates a bias above some threshold ε ≥ 0, he runs a chance 
to be detected. It is likely that the optimal threshold is ε = 0, i.e. no 
bias, on both sides but this is not proven. 

Natural Question:  Can we built a (better) cheat sensitive coin 
tossing on top of a cheat sensitive bit commitment?  The answer is 
no, if we use weak bit commitment as a cheat sensitive bit 
commitment. However, it is possible if we slightly modify the  
definition. 



Cheat sensitivity is interesting because we can hope  to obtain it 
with unconditional security for most cryptographic tasks without 
the help of trusted parties!  

It would be much more interesting if cheat sensitivity was 
composable as we hope it is the case in the particular case of cheat 
sentitive  bit commitment (given an adequate definition). At this 
time, we have no theory of cheat sensitivity.  

Perhaps, a general composability lemma is possible with cheat
sensitive security. Such a lemmma would provide cheat sensitive 
coin flipping, cheat sensitive oblivious transfer, etc. on top of cheat 
sensitive bit commitment. The other standard reductions would 
hold as well. 



1- Here, we have verified that the universal classical composability 
theorem is valid in the quantum world, even for tasks with quantum 
inputs! It should applied to quantum multiparty computation (but 
not yet checked).  

2- Here, we have obtained a natural binding condition for a
relativistic bit commitment protocol.  The same condition applies to 
other kind of bit commitment protocols (DMS 2000).  We believe 
that this definition is composable in some way.   

3- Point 2 is our main motivation to look for a variation on our 
universal definition that is easier to achieve and yet composable.  
(Work in progress)

4- Universal Composability might also be interesting for  Cheat 
Sensitive Security (Work in progress). 


