
Hidden Translation and Orbit Coset in

Quantum Computing

Miklos Santha

MSRI, LRI (Orsay)

joint work with

Katalin Friedl SZTAKI (Budapest)
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Structure of the talk 1

• HIDDEN TRANSLATION

Efficient quantum algorithm in elementary Abelian groups

• ORBIT COSET

Efficient recursive quantum algorithm in smoothly solvable

groups



HIDDEN SUBGROUP 2

Input: G finite group, and f : G→ S hiding H ≤ G:

∀x ∈ G, h ∈ H, f(x) = f(xh) and ∀x, y ∈ G, xH 6= yH =⇒ f(x) 6= f(y).
Output: Generators for H.

G
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a1H

...

atH

S

Theorem: Can be solved in quantum poly(log|G|)-time when

– G = Zk
2 o Z2 [Roetteler,Beth’98]

– H is normal and QFTG is available [Hallgren,Russell,Ta-Shma’00]

– H is normal and G is solvable [Ivanyos,Magniez,Santha’01]

– ∩{N(H) : H ≤ G} is large [Grigni,Schulman,Vazirani,Vazirani’01]

– G = Zp o Zq when q = p−1
(log p)c [Moore,Rockmore,Russell,Schulman’02]

– G = Zn o Z2 with exponential postprocessing [Ettinger,Høyer’00]

– G = Zn
p o Z2 for fixed prime p



HIDDEN TRANSLATION 3

Input: G finite group.

f0, f1 : G→ S injective functions having a translation u ∈ G:

∀x ∈ G, f0(x) = f1(xu).
Output: u.
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Theorem. [Ettinger-Høyer’00]. If G finite Abelian group then

HIDDEN TRANSLATION on G ' HIDDEN SUBGROUP on Go Z2.

Group operation on Go Z2 : (x1, b1) · (x2, b2) = (x1 + (−1)b1x2, b1 ⊕ b2).
Fact. f(x, b) = fb(x) hides H = {(0, 0); (u, 1)} on Go Z2.

Theorem. For every prime p, HIDDEN TRANSLATION can be

solved on Zn
p by a quantum algorithm with query complexity

O(p(n+ p)p−1) and time complexity (n+ p)O(p).



The algorithm: Part 1 (quantum) 4

Idea of [EH’00]: Apply QFT on the direct product Zn
p × Z2.

State: 1
2pn

∑
x∈Zn

p

1∑
b=0

∑
y∈Zn

p

1∑
c=0

ωx·y
p (−1)bc|y〉|c〉|fb(x)〉

Rewrite using the hidden translation:

1
2pn

∑
x∈Zn

p

∑
y∈Zn

p

1∑
c=0

(
ωx·y

p + ω(x+u)·y
p (−1)c

)
|y〉|c〉|f0(x)〉

For all x, y the amplitude of |y〉|1〉|f0(x)〉 is:

1
2pnω

x·y
p (1− ωy·u

p )

After observation:

Pr[output = (y, 1)] = 1
4p2n |1− ωy·u

p |2.

Properties of the output distribution:
• Pr[c = 1] = 1

2

• depends only on y · u
• for every (y, 1) observed: y · u 6= 0 mod p.



The algorithm: Part 2 (classical postprocessing) 5

Sample (y, 1) such that y · u 6= 0 mod p (i.e. y 6∈ u⊥)

Linear inequations 7→ polynomial equations

y · u 6= 0 mod p ⇐⇒ (y · u)p−1 = 1 mod p

Fact. Solving polynomial equations is NP-complete.

Idea: ‘Linearize’ the system in the symmetric power of Zn
p

Definition. Z(p−1)
p [x1, . . . , xn] is the vector space of homogeneous

polynomials in n-variables of degree (p−1) over Zp.

• A basis: Monomials of degree (p−1)
• Dimension:

(
n+p−2

p−1

)
Transfer from Zn

p via (Zn
p )∗ to Z(p−1)

p [x1, . . . , xn] :

Definition. For y = (a1, . . . , an) ∈ Zn
p let y(p−1) = (

∑
j ajxj)p−1.

y · u 6= 0 mod p =⇒ y(p−1) · u∗ = (y · u)p−1 = 1 mod p,

where in u∗ ∈ Zn
p the monomial xe1

1 · · ·xen
n has coordinate ue1

1 · · ·uen
n .



The algorithm: Part 2 (classical postprocessing) 6

End of the algorithm:

• Hopefully the linear system in Z(p−1)
p [x1, . . . , xn] has unique

solution

• Find the solution U = u∗

• Try the (p− 1) candidates v such that v∗ = u∗

Example. p = 3, n = 3, u = (1, 2, 0).

Sample in Z3
3 Inequation in Z3

3 Equation in Z(2)
3 [x1, x2, x3]

y1 = (0, 1, 0) x2 · u 6= 0 x2
2 · U = 1

y2 = (0, 2, 1) (2x2 + x3) · u 6= 0 (x2
2 + x2

3 + x2x3) · U = 1

y3 = (0, 2, 2) (2x2 + 2x3) · u 6= 0 (x2
2 + x2

3 + 2x2x3) · U = 1
...

...
...

where x1 = (1, 0, 0), x2 = (0, 1, 0), x3 = (0, 0, 1),
x2

1 = (1, 0, 0, 0, 0, 0), . . .

System of full rank =⇒ unique solution U = x2
1 + x2

2 + 2x1x2.

Try the 2 possible translations (1, 2, 0) and (2, 1, 0) ; u = (1, 2, 0).



Translation finding Algorithm 7

Translation findingf (Zn
p )

0. If f0(0) = f1(0) then return 0.
1. N ← 13p

(
n+p−2

p−1

)
.

2. For i = 1, . . . , N do (zi, bi)← Fourier samplingf (Zn
p × Z2).

3. {y1, . . . , ym} ← {zi : bi = 1}.

4. For i = 1, . . . ,m do Yi ← y
(p−1)
i .

5. Solve Y1 · U = 1, . . . , Ym · U = 1.
6. If several solutions then abort.

7. Let j be such that the coefficient of xp−1
j in U is 1.

8. Let v ∈ Zn
p be such that vkvj is the coefficient of xkx

p−2
j in U .

9. Find 0 < a < p such that f0(0) = f1(av).
10. Return av.



Line Lemma 8

Line Lemma. Let Lz,y = {(z + ay)(p−1) : 0 ≤ a ≤ p− 1} for y, z ∈ Zn
p .

Then y(p−1) ∈ Span(Lz,y).

Proof. Let Mz,y = {
(
p−1

k

)
z(k)y(p−1−k) : 0 ≤ k ≤ p− 1}.

Claim: Span(Lz,y) = Span(Mz,y).

z(p−1) (z + y)(p−1) (z + 2y)(p−1) . . . (z + (p− 1)y)(p−1)(
p−1
0

)
z(p−1) 1 1 1 . . . 1(

p−1
1

)
z(p−2)y(1) 0 1 2 . . . (p− 1)(

p−1
2

)
z(p−3)y(2) 0 1 22 . . . (p− 1)2

...
...

...
...

...(
p−1
p−1

)
y(p−1) 0 1 (p− 1)2 . . . (p− 1)(p−1)

Corollary. Z(p−1)
p [x1, . . . , xn] is spanned by {y(p−1) : y ∈ Zn

p}.



Full rank 9

Lemma. Let W ≤ Z(p−1)
p [x1, . . . , xn] and R = {y ∈ Zn

p : y(p−1) ∈W}.
Set Vk = {y ∈ Zn

p : y · u = k}, and Rk = R ∩ Vk.

If W 6= Z(p−1)
p [x1, . . . , xn] then |Rk|

|Vk| ≤
p−1

p for k = 1, . . . , p− 1.

Proof. Corollary =⇒ R 6= Zn
p .

Case 1: R0 = V0. Then Rk 6= Vk for k = 1, . . . , p− 1. Let y ∈ V1 −R1.

Line Lemma =⇒ in each coset of <y> an element is outside R.

<y> . . . z +<y> . . .

V0 0 . . . z . . .

V1 y . . . z + y . . .
...

... . . .
... . . .

Vp−1 (p−1)y . . . z + (p−1)y . . .

=⇒ |R|
|Zn

p |
≤ p−2

p−1 =⇒ |Rk|
|Vk| ≤

p−2
p−1 .

Case 2: R0 6= V0. Let y ∈ V0 −R0, then Vk is union of cosets of <y>.

Line Lemma =⇒ |Rk|
|Vk| ≤

p−1
p .



Black-box groups 10

G a finite group given by generators

Elements are encoded in {0, 1}n where n = O(log |G|)
Group operations are performed by oracles

For G solvable, the derived series is computable in probabilistic

polynomial time [Babai et al.’95]

G = G(0) �G(1) � . . .�G(m) = {1G}

For G solvable, the composition series is computable in quantum

polynomial time [Watrous’01] [Ivanyos et al.’01]

G = G0 �G1 � . . .�Gm = {1G}
where |Gi/Gi+1| is prime



Group action on quantum states 11

G finite group, Γ mutually orthogonal quantum states

Action of G on Γ is a homomorphism

α : G → Perm(Γ)
x 7→ αx

Notation. αx(|ϕ〉) = |x · ϕ〉
Oracle for a group action : |x〉|ϕ〉 7→ |x〉|x · ϕ〉

Example 1. For t ≥ 1, αt is an action on Γt = {|ϕ〉⊗t : |ϕ〉 ∈ Γ}
αt

x : |ϕ〉⊗t 7→ |x · ϕ〉⊗t

Example 2. Let f : G→ S a hiding function,

|f〉 = 1√
|G|

∑
g∈G

|g〉|f(g)〉.

The y-translate of f is y · f : g 7→ f(gy)
Γ(f) = {|y · f〉 : y ∈ G} .

The translation action on Γ(f) is τx : |f ′〉 7→ |x · f ′〉

Oracle for f =⇒ oracle for the translation action :

|x〉|x · f ′〉 = 1√
|G|

∑
g∈G

|x〉|g〉|f ′(gx)〉 = 1√
|G|

∑
g∈G

|x〉|gx−1〉|f ′(g)〉



Quantum problems 12

The stabilizer of |ϕ〉 is G|ϕ〉 = {x ∈ G : |x · ϕ〉 = |ϕ〉}.
The orbit of |ϕ〉 is G(|ϕ〉) = {|x · ϕ〉, x ∈ G}.
The orbit coset of |ϕ0〉 and |ϕ1〉 is {u ∈ G : |u · ϕ1〉 = |ϕ0〉}.
The orbit coset is empty or a left coset uG|ϕ1〉.

STABILIZER

Input: G,α,Γ, |ϕ〉.
Output: G|ϕ〉

ORBIT COSET

Input: G,α,Γ, |ϕ0〉, |ϕ1〉.

Output:

 reject, if G(|ϕ0〉) ∩G(|ϕ1〉) = ∅;
u ∈ G s.t. |u · ϕ1〉 = |ϕ0〉 and generators for G|ϕ1〉, ow.

Theorem. When t = poly(log|G|) then for the translation action τ t

• HIDDEN SUBGROUP ≤ STABILIZER

• HIDDEN TRANSLATION ≤ ORBIT COSET

Proof. The subgroup hidden by f is the stabilizer of |f〉. The

translation of (f0, f1) is the orbit coset of (|f0〉, |f1〉).



STABILIZER and ORBIT COSET in easy groups 13

Theorem. Let G Abelian. When t = Ω(log(|G|), STABILIZER for αt

is solvable in quantum time poly(log|G|).

Proof. On input |ϕ〉⊗t let f(x) = |x · ϕ〉. Then f hides G|ϕ〉. Run the

algorithm for HIDDEN SUBGROUP, simulating the ith query

|x〉|0〉S using the ith copy of |ϕ〉.

Theorem. Let G = Zn
p . When t = Ω(p(n+ p)p−1), ORBIT COSET

for αt is solvable in quantum time (n+ p)O(p).

Proof. One can suppose w.l.o.g. that the stabilizers of the input

|ϕ0〉⊗t, |ϕ1〉⊗t are trivial. Let fb(x) = |x · ϕb〉. Then the translation of

(f0, f1) is the orbit coset of (|ϕ0〉, |ϕ1〉). Run the algorithm

Translation finding.



Factor group action 14

Idea. Let N �G. Given PROBLEM on G, establish self-reducibility

PROBLEM(G) ≤ {PROBLEM(N), PROBLEM(G/N)}

Definition. Orbit superposition

|N · ϕ〉 = 1√
|N(|ϕ〉)|

∑
|ϕ′〉∈N(|ϕ〉)

|ϕ′〉

Definition. Factor group action

ΓN = {|N · ϕ〉 : |ϕ〉 ∈ Γ}

αN : G/N → Perm(ΓN )

xN 7→ αN,x

αN,x(|N · ϕ〉) = |x · (N · ϕ)〉

How to create the orbit superposition |N · ϕ〉?



O. SUPERPOSITION ≤ O. COSET in solvable groups 15

Theorem. G solvable. Given |ϕ〉⊗(s+blog|G|c+1), realizing |ϕ〉|G · ϕ〉⊗s is

reducible to ORBIT COSET in subgroups of G for α.

Proof. Let G = G0 �G1 � . . .�Gm = {1G} where Gn/Gn+1 is cyclic of

prime order rn and is generated by znGn+1.

For n = m downto 0, produce the state |ϕ〉|Gn · ϕ〉⊗(s+n).

Induction step. Set k = s+ n+ 1. Given |ϕ〉|Gn+1 · ϕ〉⊗k

• Compute k copies of 1√
rn

rn−1∑
i=0

|i〉|zi
n · (Gn+1 · ϕ)〉

• Disentangle the first registers by the method of Watrous

QFT: ( 1√
rn

rn−1∑
j=0

|j〉|ψj〉)⊗k where |ψj〉 = 1√
rn

rn−1∑
i=0

ωij
rn
|zi

n · (Gn+1 · ϕ)〉.

Suppose j0 6= 0. Then |(zi
ng)

jj−1
0 · ψj0〉 = ω−ij

rn
|ψj0〉 for g ∈ Gn+1.

ORBIT COSET on |ϕ〉 and |zi
ng · ϕ〉 gives zi

ng.



ORBIT COSET self-reducibility 16

Theorem. Let N �G, N solvable. When t = Ω(s+ log|G|)
• OC(G,αt) ≤ { OC(Subgroups of N,α), OC(G/N, (αN )s) }
• STAB(G,αt) ≤ { OC(Subgroups of N,α), STAB(G/N, (αN )s) }

Proof for STABILIZER.

Compute N|ϕ〉 = G|ϕ〉 ∩N by STAB(N,α).
Construct H ≤ G such that

N|ϕ〉 ≤ H ≤ G|ϕ〉 and HN/N = G|ϕ〉N/N .

Then H = G|ϕ〉 since H ∩N = G|ϕ〉 ∩N and HN/N = G|ϕ〉N/N .

Add to N|ϕ〉 generators of G|ϕ〉N/N which are in G|ϕ〉

Fact. G|ϕ〉N/N is the stabilizer of |N · ϕ〉 in G/N .

• Compute V such that 〈V 〉 = G|ϕ〉N/N by STAB(G/N, (αN )s)
• Create input |N · ϕ〉⊗s by OC(N,α)
• Let z ∈ V . Then z = gn−1 for g ∈ G|ϕ〉 and n ∈ N . In N the orbit

coset of |z−1ϕ〉 and |ϕ〉 is nN|ϕ〉. Find n by OC(N,α).



Smoothly solvable groups 17

Definition. A solvable group is smoothly solvable if it is of bounded

exponent and its derived series is of bounded length.

Fact. A smoothly solvable group G has a smooth series

G = G0 �G1 � . . .�Gm = {1G}
where m bounded and Gi/Gi+1 is elementary Abelian of bounded

exponent.

Theorem. Let G smoothly solvable. When t = logΩ(1)|G| then

ORBIT COSET can be solved for αt in quantum time poly(log|G|).

Theorem. Let G solvable such that G′ is smoothly solvable. When

t = logΩ(1)|G| then STABILIZER can be solved for αt in quantum

time poly(log|G|).

Corollary There is a quantum polynomial time algorithm for

• HIDDEN TRANSLATION in smoothly solvable groups

• HIDDEN SUBGROUP in solvable groups having a smoothly

solvable commutator subgroup


