Yhs

Hidden Translation and Orbit Coset in
Quantum Computing

Miklos Santha
MSRI, LRI (Orsay)

joint work with

Katalin Friedl| SZ TAKI (Budapest)
Gabor Ivanyos SZTAKI (Budapest)
Frédéric Magniez LRI (Orsay)

Pranab Sen LRI (Orsay)



Structure of the talk

e HIDDEN TRANSLATION

Efficient quantum algorithm in elementary Abelian groups

e ORBIT COSET

Efficient recursive quantum algorithm in smoothly solvable
groups



HIDDEN SUBGROUP

Input: G finite group, and f: G — S hiding H < G:
Vre G,he€ H, f(x) = f(zh) and Vx,ye G, zH #yH = f(x) # f(y).

Output: Generators for H.
G

H S

a1 H

atH

Theorem: Can be solved in quantum poly(log|G|)-time when

— G = 7517y [Roetteler,Beth'98]

— H is normal and QFT is available [Hallgren,Russell, Ta-Shma’00]

— H is normal and G is solvable [Ivanyos,Magniez,Santha’01]

— N{N(H) : H <G} is large [Grigni,Schulman,Vazirani,Vazirani'01]

— G =2y X Zy When g = (lgg_;)c [Moore,Rockmore, Russell,Schulman’02]
— G =7, X Zs With exponential postprocessing [Ettinger,Hgyer 00]

- G = Zg X Zo for fixed prime p




HIDDEN TRANSLATION

Input: G finite group.
fo, f1 : G — S injective functions having a translation u € G:
Ve € G,  folx) = fi(au).
Output: wu.

fo

7\%7 3\% 2\%2 4\
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fi

Theorem. [Ettinger-Hgyer'00]. If GG finite Abelian group then
HIDDEN TRANSLATION on G ~ HIDDEN SUBGROUP on G x Zs.

Group operation on G x Zs : (x1,b1) - (x9,bs) = (21 + (—1)" 29, by @ by).
Fact. f(z,b) = fi(z) hides H = {(0,0); (u,1)} on G x Zs.

Theorem. For every prime p, HIDDEN TRANSLATION can be
solved on ZZ by a quantum algorithm with query complexity
O(p(n +p)P~ ') and time complexity (n+ p)°®.



The algorithm: Part 1 (quantum)

Idea of [EH'00]: Apply QFT on the direct product Z; x Zj.

State: e S‘ - Sjw o) fe(x))

r€L} b=0 y€ZLy c=0
Rewrite using the hidden translation:

Y Y ) e o)

r€Ly yeLy c=0

For all x,y the amplitude of |y)|1)|fo(z)) is

sy (1 -l )

After observation:
Prloutput = (y,1)] = 4}9%\1 — wg'“\z.

Properties of the output distribution:
e Pric=1] =3
e depends only on vy - u
e for every (y,1) observed:  y-u# 0 mod p.



The algorithm: Part 2 (classical postprocessing)

Sample (y,1) such that y-u#0 modp (ie ygut)
Linear inequations — polynomial equations

y-u#0 modp <= (y-u)’"' =1 mod p
Fact. Solving polynomial equations is NP-complete.
Idea: ‘Linearize’ the system in the symmetric power of Ly,

Definition. Z% Y[x1,...,,] is the vector space of homogeneous
polynomials in n-variables of degree (p—1) over Z,.
e A basis: Monomials of degree (p—1)

e Dimension: (”;ff)

Transfer from Z; via (Z;)" to Z]gp—ﬂ[a;l, ey Ty
Definition. For y = (ai1,...,a,) € Z,; let yP=) = (2, ajz;)P L.
y-u#£0 modp = yPV.u*=(y-uw)P =1 modyp,

where in u* € Z; the monomial x7" ---x;" has coordinate uj'---u;".

n



The algorithm: Part 2 (classical postprocessing)

End of the algorithm:

e Hopefully the linear system in Z{ " [zy,...,x,] has unique
solution

e Find the solution U = u~

e Try the (p — 1) candidates v such that v* =u"
Example. p=3, n=3, u=(1,2,0).
Sample in Z3 | Inequation in Z3 | Equation in Z{" [z, 22, 23]
y1 = (0,1,0) To-u#0 z5-U=1
y2 = (0,2,1) (2z0 +23) - u#£0 | (25 + 25 +x0m3)-U =1
y3 = (0,2,2) (29 + 2x3) - u # 0 (:c% + 513% + 2x023) - U =1

where x| = (1,0,0), To = (O, 1,0), xr3 = (0,0, 1),
2 = (1,0,0,0,0,0), ...

System of full rank = unique solution U = 2% + 23 + 2z, 2».
Try the 2 possible translations (1,2,0) and (2,1,0) ~ u = (1, 2,0).



Translation finding Algorithm

Translation finding’ (Z)

0. If fo(0) = f1(0) then return 0.
n+p—2

1. N — 13p("I77%).

2. Fori=1,...,N do (z,b;) — Fourier sampling’ (Z? x Z,).

4. Fori=1,....m doYiHy,fp_l).
5. Solve Y, -U=1,....Y, - U=1.

6. If several solutions then abort.

7. Let 5 be such that the coefficient of $§—1 in U is 1.
8. Let v € Z be such that vv; is the coefficient of xkx§_2 in U.

9. Find 0 < a < p such that fo(()) — fl(afu).
10. Return av.




Line Lemma 8

Line Lemma. Let L., = {(z+ay)?V:0<a<p—1} fory,z € Ly .
Then »?~Y ¢ Span(L. ).

Proof. Let M, , = {(*,1)z®yP=17F 0 <k <p—1}.
Claim: Span(L, ,) = Span(M., ).

2= ()P (z 4 2y)D (24 (p—1)y)PD
(P71)zP=2y ) 0 1 2 . (p—1)
(P51 zP=3)y2) 0 1 922 . (p—1)2
(g_i)y(p 2 0 1 (p— 1)* . (p — 1)(p—1)

Corollary. ¢ Yz, ...,z,] is spanned by {y*~ ! :y e Z'}.




Full rank

Lemma. Let W < Z¢ Y[zy,...,2,) and R={y € Z!' : y»~ 1) € W}.
Set Vk:{yEZZ:y u:k} and R, = RNV.

If W ZP Vlzy,...,2,] then '@c" <lfork=1,...p—L

Proof. Corollary — R # 7.
Case 1: Ry=Vy. Then R, #V, for k=1,...,p—1. Let y e V] — R;.
Line Lemma = in each coset of <y> an element is outside R.

<y> ol 2 <y>
V() 0 <
Vi Yy Z+y
Vo1 || =Dy | ... | 2+ (p—1)y
| R p—2 | R | p—2
= (] Sp 1 = il Sp1-

Case 2: Ry # V. Let y € Vo — Ro, then V.. is union of cosets of <y>.

Line Lemmma — | R | < P—=
|V | D




Black-box groups
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(- a finite group given by generators
Elements are encoded in {0,1}" where n = O(log |G|)
Group operations are performed by oracles

For (G solvable, the derived series is computable in probabilistic
polynomial time [Babai et al.’95]

G=GVpGWps. . . >G"™ = {15}

For G solvable, the composition series is computable in quantum

polynomial time [Watrous'01] [Ivanyos et al.’01]
G=Gy>G1>...0 G, = {1g}

where |G;/G;11| is prime



Group action on quantum states
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¢ finite group, I' mutually orthogonal quantum states
Action of G on I' is a homomorphism

a: G — Perm(I)

r = Qg
Notation. a,(|¢)) = |z - )
Oracle for a group action : |z)|p) — |z)|z - ¢)

Example 1. For ¢t > 1, o!

is an action on I'" = {|p)®" : |p) € T'}
ag ) = |z )
Example 2. Let f : G — S a hiding function,

f) = ﬁa > 19 f(9))-

gelG
The y-translate of fisy-f:g~— f(gy)

L(f)={ly-f):yeG}

The translation action on I'(f) is 7, : |f") — |z - ")

Oracle for f = oracle for the translation action :

z) |- f1) = \/|1?| g; z)[g)| [ (g)) = \/|1?| g; 2) gz~ )| (9))




Quantum problems
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The stabilizer of |p) is G|,y ={r € G:|rv-9)=|p)}.

The orbit of |¢) is G(|p)) ={|z-¢),x € G}.

The orbit coset of |¢g) and |p1) is{ue G :|u-p1) = |po)}.
The orbit coset is empty or a left coset uG|¢1>.

STABILIZER
Input: G,a,T, |p).
Output: G|,
ORBIT COSET
Input: G,a, T, |¢o),|e1).
reject, if G(|po)) NG(|p1)) =0

u e G s.t. ju-pi) = |pg) and generators for G|,,y, Ow.

Output:

Theorem. When t = poly(log|G|) then for the translation action 7

e HIDDEN SUBGROUP < STABILIZER
e HIDDEN TRANSLATION < ORBIT COSET

Proof. The subgroup hidden by f is the stabilizer of |f). The
translation of (fy, f1) is the orbit coset of (|fo),|f1))-



STABILIZER and ORBIT COSET in easy groups 13

Theorem. Let G Abelian. When t = Q(log(|G
is solvable in quantum time poly(log|G|).

), STABILIZER for o

Proof. On input [p)®" let f(z) =|z-¢). Then f hides G|, . Run the
algorithm for HIDDEN SUBGROUP, simulating the " query
2)|0)s using the " copy of |¢).

Theorem. Let G =Z. When ¢t =Q(p(n+p)’~'), ORBIT COSET

t

for o! is solvable in quantum time (n + p)°®).

Proof. One can suppose w.l.0.g. that the stabilizers of the input
0@, |o1)®" are trivial. Let fi(x) = |z - ,). Then the translation of
(fo, f1) is the orbit coset of (|¢o),|v1)). Run the algorithm
Translation finding.



Factor group action
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Idea. Let N < G. Given PROBLEM on @, establish self-reducibility
PROBLEM(G) < {PROBLEM(N), PROBLEM(G/N)}

Definition. Orbit superposition

‘N'¢>:\/|Nl<|so>>| PO

| )EN(l¥))

Definition. Factor group action
Iy ={IN-¢):]p) el}

ay : G/IN — Perm(I'y)

zN = ang
anz ([N -¢) =z (N-p))

How to create the orbit superposition |N - ¢)?



O. SUPERPOSITION < O. COSET in solvable groups 15

Theorem. G solvable. Given |p)@EFoslCUHD realizing |¢)|G - ¢)®* is
reducible to ORBIT COSET in subgroups of GG for «.

Proof. Let G=Gy>G1>...> Gy, = {1a} where G,,/G 11 is cyclic of
prime order r,, and is generated by z,G, 1.

For n =m downto 0, produce the state |p)|G,, - ¢)@E+).

Induction step. Set k=s+n+ 1. Given |p)|Gpi1 - )%k

Th—1
ﬁ—n Z )25, - (Gnt1 - ¥))
i=0

e Disentangle the first registgrs by the method of Watrous

Thn—1 Thn—1

QFT: (= > [/)ey)®" where [¢;) = mZ w128 - (Gt - )
§=0

) i -1 i
Suppose Jo 7& 0. Then |(an>”0 ' ¢jo> — wrnj‘wjo> for g c Gn+1-
ORBIT COSET on |¢) and |z g - ¢) gives z'g.



ORBIT COSET self-reducibility 16

Theorem. Let N <G, N solvable. When t = Q(s + log|G|)
e OC(G,a") < { OC(Subgroups of N,a), OC(G/N,(ay)®) }
e STAB(G,a") < { OC(Subgroups of N,a), STAB(G/N, (ax)®) }

Proof for STABILIZER.
Compute N,y = G|,y NN by STAB(N, a).
Construct H < (G such that
N|(p> < HL G|90> and HN/N = G|90>N/N.

Then H =G, since HNN =G,y N and HN/N = G|, yN/N.

Add to N, generators of G|, N/N which are in G|,
Fact. G|, N/N is the stabilizer of [N -¢) in G/N.

e Compute V such that (V) = G|, yN/N by STAB(G/N, (an)?)

e Create input [N - p)®® by OC(N, )

elLetzeV. Then z=gn ' for g€ G|, and n € N. In N the orbit
coset of [z~ ') and |¢) is nN|,. Find n by OC(N, ).



Smoothly solvable groups 17

Definition. A solvable group is smoothly solvable if it is of bounded
exponent and its derived series is of bounded length.

Fact. A smoothly solvable group G has a smooth series
G=Gy>Gi>...> G =1{1g}

where m bounded and G, /G, is elementary Abelian of bounded

exponent.

Theorem. Let G smoothly solvable. When ¢ = log V|G| then
ORBIT COSET can be solved for o' in quantum time poly(log|G]).

Theorem. Let G solvable such that G’ is smoothly solvable. When
t =1og” V|G| then STABILIZER can be solved for a in quantum
time poly(log|G|).

Corollary There is a quantum polynomial time algorithm for

e HIDDEN TRANSLATION in smoothly solvable groups

e HIDDEN SUBGROUP in solvable groups having a smoothly
solvable commutator subgroup



