

Hidden Translation and Orbit Coset in Quantum Computing

Miklos Santha

MSRI, LRI (Orsay)

joint work with

Katalin Friedl SZTAKI (Budapest)

Gábor Ivanyos SZTAKI (Budapest)

Frédéric Magniez LRI (Orsay)

Pranab Sen LRI (Orsay)

• HIDDEN TRANSLATION

Efficient quantum algorithm in elementary Abelian groups

• ORBIT COSET

Efficient recursive quantum algorithm in smoothly solvable groups

HIDDEN SUBGROUP

Input: G finite group, and $f: G \to S$ hiding $H \leq G$: $\forall x \in G, h \in H, f(x) = f(xh)$ and $\forall x, y \in G, xH \neq yH \implies f(x) \neq f(y)$. Output: Generators for H.

Theorem: Can be solved in quantum poly(log|G|)-time when

- $-G = \mathbb{Z}_2^k \wr \mathbb{Z}_2$ [Roetteler,Beth'98]
- -H is normal and QFT_G is available [Hallgren, Russell, Ta-Shma'00]
- -H is normal and G is solvable [Ivanyos, Magniez, Santha'01]
- $\cap \{N(H) : H \leq G\}$ is large [Grigni,Schulman,Vazirani,Vazirani'01]

 $-G = \mathbb{Z}_p \rtimes \mathbb{Z}_q$ when $q = \frac{p-1}{(\log p)^c}$ [Moore,Rockmore,Russell,Schulman'02]

- $-G = \mathbb{Z}_n \rtimes \mathbb{Z}_2$ with exponential postprocessing [Ettinger, Høyer'00]
- $-G = \mathbb{Z}_p^n \rtimes \mathbb{Z}_2$ for fixed prime p

HIDDEN TRANSLATION

Input: G finite group.

 $f_0, f_1: G \to S$ injective functions having a translation $u \in G$: $\forall x \in G, \quad f_0(x) = f_1(xu).$

Output: *u*.

Theorem. [Ettinger-Høyer'00]. If G finite Abelian group then HIDDEN TRANSLATION on $G \simeq$ HIDDEN SUBGROUP on $G \rtimes \mathbb{Z}_2$.

Group operation on $G \rtimes \mathbb{Z}_2$: $(x_1, b_1) \cdot (x_2, b_2) = (x_1 + (-1)^{b_1} x_2, b_1 \oplus b_2).$ Fact. $f(x, b) = f_b(x)$ hides $H = \{(0, 0); (u, 1)\}$ on $G \rtimes \mathbb{Z}_2.$

Theorem. For every prime p, HIDDEN TRANSLATION can be solved on \mathbb{Z}_p^n by a quantum algorithm with query complexity $O(p(n+p)^{p-1})$ and time complexity $(n+p)^{O(p)}$.

The algorithm: Part 1 (quantum)

Idea of [EH'00]: Apply QFT on the direct product $\mathbb{Z}_p^n \times \mathbb{Z}_2$.

State:

$$\frac{1}{2p^n} \sum_{x \in \mathbb{Z}_p^n} \sum_{b=0} \sum_{y \in \mathbb{Z}_p^n} \sum_{c=0} \omega_p^{x \cdot y} (-1)^{bc} |y\rangle |c\rangle |f_b(x)\rangle$$

Rewrite using the hidden translation:

1

1

$$\frac{1}{2p^n} \sum_{x \in \mathbb{Z}_p^n} \sum_{y \in \mathbb{Z}_p^n} \sum_{c=0}^1 \left(\omega_p^{x \cdot y} + \omega_p^{(x+u) \cdot y} (-1)^c \right) |y\rangle |c\rangle |f_0(x)\rangle$$

For all x,y the amplitude of $|y
angle|1
angle|f_0(x)
angle$ is:

$$\frac{1}{2p^n}\omega_p^{x\cdot y}(1-\omega_p^{y\cdot u})$$

After observation:

$$\Pr[\text{output} = (y, 1)] = \frac{1}{4p^{2n}} |1 - \omega_p^{y \cdot u}|^2$$

Properties of the output distribution:

- $\Pr[c=1] = \frac{1}{2}$
- depends only on $y \cdot u$
- for every (y, 1) observed: $y \cdot u \neq 0 \mod p$.

The algorithm: Part 2 (classical postprocessing)

Sample (y, 1) such that $y \cdot u \neq 0 \mod p$ (*i.e.* $y \notin u^{\perp}$) Linear inequations \mapsto polynomial equations

 $y \cdot u \neq 0 \mod p \iff (y \cdot u)^{p-1} = 1 \mod p$

Fact. Solving polynomial equations is NP-complete.

Idea: 'Linearize' the system in the symmetric power of \mathbb{Z}_p^n Definition. $\mathbb{Z}_p^{(p-1)}[x_1, \ldots, x_n]$ is the vector space of homogeneous polynomials in *n*-variables of degree (p-1) over \mathbb{Z}_p .

- A basis: Monomials of degree (p-1)
- Dimension: $\binom{n+p-2}{p-1}$

Transfer from \mathbb{Z}_p^n via $(\mathbb{Z}_p^n)^*$ to $\mathbb{Z}_p^{(p-1)}[x_1, \dots, x_n]$: Definition. For $y = (a_1, \dots, a_n) \in \mathbb{Z}_p^n$ let $y^{(p-1)} = (\sum_j a_j x_j)^{p-1}$. $y \cdot u \neq 0 \mod p \implies y^{(p-1)} \cdot u^* = (y \cdot u)^{p-1} = 1 \mod p$,

where in $u^* \in \mathbb{Z}_p^n$ the monomial $x_1^{e_1} \cdots x_n^{e_n}$ has coordinate $u_1^{e_1} \cdots u_n^{e_n}$.

End of the algorithm:

• Hopefully the linear system in $\mathbb{Z}_p^{(p-1)}[x_1,\ldots,x_n]$ has unique solution

- Find the solution $U = u^*$
- Try the (p-1) candidates v such that $v^* = u^*$

Example. p = 3, n = 3, u = (1, 2, 0).

Sample in \mathbb{Z}_3^3	Inequation in \mathbb{Z}_3^3	Equation in $\mathbb{Z}_3^{(2)}[x_1, x_2, x_3]$
$y_1 = (0, 1, 0)$	$x_2 \cdot u \neq 0$	$x_2^2 \cdot U = 1$
$y_2 = (0, 2, 1)$	$(2x_2 + x_3) \cdot u \neq 0$	$(x_2^2 + x_3^2 + x_2x_3) \cdot U = 1$
$y_3 = (0, 2, 2)$	$(2x_2 + 2x_3) \cdot u \neq 0$	$(x_2^2 + x_3^2 + 2x_2x_3) \cdot U = 1$

where $x_1 = (1, 0, 0), x_2 = (0, 1, 0), x_3 = (0, 0, 1), x_1^2 = (1, 0, 0, 0, 0, 0), \dots$

System of full rank \implies unique solution $U = x_1^2 + x_2^2 + 2x_1x_2$. Try the 2 possible translations (1, 2, 0) and $(2, 1, 0) \rightsquigarrow u = (1, 2, 0)$.

Translation finding $f(\mathbb{Z}_p^n)$ 0. If $f_0(0) = f_1(0)$ then return 0. 1. $N \leftarrow 13p\binom{n+p-2}{n-1}$. 2. For i = 1, ..., N do $(z_i, b_i) \leftarrow$ Fourier sampling $f(\mathbb{Z}_n^n \times \mathbb{Z}_2)$. 3. $\{y_1, \ldots, y_m\} \leftarrow \{z_i : b_i = 1\}.$ 4. For $i = 1, \ldots, m$ do $Y_i \leftarrow y_i^{(p-1)}$. 5. Solve $Y_1 \cdot U = 1, \dots, Y_m \cdot U = 1$. 6. If several solutions then abort. 7. Let j be such that the coefficient of x_i^{p-1} in U is 1. 8. Let $v \in \mathbb{Z}_p^n$ be such that $v_k v_j$ is the coefficient of $x_k x_j^{p-2}$ in U. 9. Find 0 < a < p such that $f_0(0) = f_1(av)$. 10. Return av.

Line Lemma

Line Lemma. Let $L_{z,y} = \{(z+ay)^{(p-1)} : 0 \le a \le p-1\}$ for $y, z \in \mathbb{Z}_p^n$. Then $y^{(p-1)} \in \text{Span}(L_{z,y})$.

Proof. Let $M_{z,y} = \{ \binom{p-1}{k} z^{(k)} y^{(p-1-k)} : 0 \le k \le p-1 \}.$ Claim: $\text{Span}(L_{z,y}) = \text{Span}(M_{z,y}).$

	$z^{(p-1)}$	$(z+y)^{(p-1)}$	$(z+2y)^{(p-1)}$	•••	$(z + (p-1)y)^{(p-1)}$
$\binom{p-1}{0}z^{(p-1)}$	1	1	1	•••	1
$\binom{p-1}{1} z^{(p-2)} y^{(1)}$	0	1	2	•••	(p-1)
$\binom{p-1}{2} z^{(p-3)} y^{(2)}$	0	1	2^2	•••	$(p-1)^2$
	:	:			:
$\binom{p-1}{p-1}y^{(p-1)}$	0	1	$(p - 1)^2$	•••	$(p-1)^{(p-1)}$

Corollary. $\mathbb{Z}_p^{(p-1)}[x_1,\ldots,x_n]$ is spanned by $\{y^{(p-1)}: y \in \mathbb{Z}_p^n\}$.

Full rank

Lemma. Let $W \leq \mathbb{Z}_p^{(p-1)}[x_1, \dots, x_n]$ and $R = \{y \in \mathbb{Z}_p^n : y^{(p-1)} \in W\}$. Set $V_k = \{y \in \mathbb{Z}_p^n : y \cdot u = k\}$, and $R_k = R \cap V_k$. If $W \neq \mathbb{Z}_p^{(p-1)}[x_1, \dots, x_n]$ then $\frac{|R_k|}{|V_k|} \leq \frac{p-1}{p}$ for $k = 1, \dots, p-1$. Proof. Corollary $\implies R \neq \mathbb{Z}_p^n$. Case 1: $R_0 = V_0$. Then $R_k \neq V_k$ for $k = 1, \dots, p-1$. Let $y \in V_1 - R_1$. Line Lemma \implies in each coset of $\langle y \rangle$ an element is outside R.

		$\langle y \rangle$	•••	$z + \langle y \rangle$	•••		
	V_0	0	•••	z	•••		
	V_1	y	•••	z + y	•••		
	:		•••		•••		
	V_{p-1}	(p-1)y	•••	z + (p-1)y	•••		
$\frac{ R }{ Z_p^n } \leq \frac{p-2}{p-1} \implies \frac{ R_k }{ V_k } \leq \frac{p-2}{p-1}.$							

Case 2: $R_0 \neq V_0$. Let $y \in V_0 - R_0$, then V_k is union of cosets of $\langle y \rangle$. Line Lemma $\implies \frac{|R_k|}{|V_k|} \leq \frac{p-1}{p}$.

Black-box groups

G a finite group given by generators Elements are encoded in $\{0,1\}^n$ where $n = O(\log |G|)$ Group operations are performed by oracles

For G solvable, the derived series is computable in probabilistic polynomial time [Babai et al.'95]

$$G = G^{(0)} \triangleright G^{(1)} \triangleright \ldots \triangleright G^{(m)} = \{1_G\}$$

For G solvable, the composition series is computable in quantum polynomial time [Watrous'01] [Ivanyos et al.'01]

$$G = G_0 \triangleright G_1 \triangleright \ldots \triangleright G_m = \{1_G\}$$

where $|G_i/G_{i+1}|$ is prime

Group action on quantum states

G finite group, Γ mutually orthogonal quantum states Action of G on Γ is a homomorphism

 $\begin{array}{rccc} \alpha & : & G & \to & \mathsf{Perm}(\Gamma) \\ & & x & \mapsto & \alpha_x \end{array}$

Notation. $\alpha_x(|\varphi\rangle) = |x \cdot \varphi\rangle$

Oracle for a group action : $|x\rangle|\varphi\rangle\mapsto|x\rangle|x\cdot\varphi\rangle$

Example 1. For $t \ge 1$, α^t is an action on $\Gamma^t = \{ |\varphi\rangle^{\otimes t} : |\varphi\rangle \in \Gamma \}$ $\alpha_x^t : |\varphi\rangle^{\otimes t} \mapsto |x \cdot \varphi\rangle^{\otimes t}$

Example 2. Let $f : G \to S$ a hiding function,

$$\begin{split} |f\rangle &= \frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle |f(g)\rangle.\\ \text{The y-translate of f is $y \cdot f : g \mapsto f(gy)$}\\ \Gamma(f) &= \{|y \cdot f\rangle : y \in G\}\\ \text{The translation action on }\Gamma(f) \text{ is τ_x} : \ |f'\rangle \mapsto |x \cdot f'\rangle \end{split}$$

Oracle for $f \implies$ oracle for the translation action : $|x\rangle|x \cdot f'\rangle = \frac{1}{\sqrt{|G|}} \sum_{g \in G} |x\rangle|g\rangle|f'(gx)\rangle = \frac{1}{\sqrt{|G|}} \sum_{g \in G} |x\rangle|gx^{-1}\rangle|f'(g)\rangle$

Quantum problems

The stabilizer of $|\varphi\rangle$ is $G_{|\varphi\rangle} = \{x \in G : |x \cdot \varphi\rangle = |\varphi\rangle\}.$ The orbit of $|\varphi\rangle$ is $G(|\varphi\rangle) = \{|x \cdot \varphi\rangle, x \in G\}.$ The orbit coset of $|\varphi_0\rangle$ and $|\varphi_1\rangle$ is $\{u \in G : |u \cdot \varphi_1\rangle = |\varphi_0\rangle\}.$ The orbit coset is empty or a left coset $uG_{|\varphi_1\rangle}$.

STABILIZER

 $\begin{array}{l} \text{Input: } G, \alpha, \Gamma, |\varphi\rangle. \\ \text{Output: } G_{|\varphi\rangle} \\ \\ \hline \text{ORBIT COSET} \\ \text{Input: } G, \alpha, \Gamma, |\varphi_0\rangle, |\varphi_1\rangle. \\ \\ \text{Output: } \begin{cases} \text{reject, if } G(|\varphi_0\rangle) \cap G(|\varphi_1\rangle) = \emptyset; \\ u \in G \text{ s.t. } |u \cdot \varphi_1\rangle = |\varphi_0\rangle \text{ and generators for } G_{|\varphi_1\rangle}, & \text{ow.} \end{cases}$

Theorem. When t = poly(log|G|) then for the translation action τ^t

- HIDDEN SUBGROUP ≤ STABILIZER
- HIDDEN TRANSLATION \leq ORBIT COSET

Proof. The subgroup hidden by f is the stabilizer of $|f\rangle$. The translation of (f_0, f_1) is the orbit coset of $(|f_0\rangle, |f_1\rangle)$.

STABILIZER and ORBIT COSET in easy groups

Theorem. Let *G* Abelian. When $t = \Omega(\log(|G|), \text{STABILIZER} \text{ for } \alpha^t$ is solvable in quantum time $\operatorname{poly}(\log|G|)$.

Proof. On input $|\varphi\rangle^{\otimes t}$ let $f(x) = |x \cdot \varphi\rangle$. Then f hides $G_{|\varphi\rangle}$. Run the algorithm for HIDDEN SUBGROUP, simulating the i^{th} query $|x\rangle|0\rangle_S$ using the i^{th} copy of $|\varphi\rangle$.

Theorem. Let $G = \mathbb{Z}_p^n$. When $t = \Omega(p(n+p)^{p-1})$, ORBIT COSET for α^t is solvable in quantum time $(n+p)^{O(p)}$.

Proof. One can suppose w.l.o.g. that the stabilizers of the input $|\varphi_0\rangle^{\otimes t}$, $|\varphi_1\rangle^{\otimes t}$ are trivial. Let $f_b(x) = |x \cdot \varphi_b\rangle$. Then the translation of (f_0, f_1) is the orbit coset of $(|\varphi_0\rangle, |\varphi_1\rangle)$. Run the algorithm **Translation finding**.

Factor group action

Idea. Let $N \triangleleft G$. Given PROBLEM on G, establish self-reducibility PROBLEM $(G) \leq \{PROBLEM(N), PROBLEM(G/N)\}$

Definition. Orbit superposition

$$N \cdot \varphi \rangle = \frac{1}{\sqrt{|N(|\varphi\rangle)|}} \sum_{|\varphi'\rangle \in N(|\varphi\rangle)} |\varphi'\rangle$$

Definition. Factor group action

$$\Gamma_N = \{ |N \cdot \varphi\rangle : |\varphi\rangle \in \Gamma \}$$

$$\begin{array}{rccc} \alpha_N & : & G/N & \to & \mathsf{Perm}(\Gamma_N) \\ & & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & &$$

$$\alpha_{N,x}(|N\cdot\varphi\rangle) = |x\cdot(N\cdot\varphi)\rangle$$

How to create the orbit superposition $|N \cdot \varphi\rangle$?

O. SUPERPOSITION \leq O. COSET in solvable groups 15

Theorem. *G* solvable. Given $|\varphi\rangle^{\otimes (s+\lfloor \log |G|\rfloor+1)}$, realizing $|\varphi\rangle|G \cdot \varphi\rangle^{\otimes s}$ is reducible to ORBIT COSET in subgroups of *G* for α .

Proof. Let $G = G_0 \triangleright G_1 \triangleright \ldots \triangleright G_m = \{1_G\}$ where G_n/G_{n+1} is cyclic of prime order r_n and is generated by z_nG_{n+1} .

For n = m downto 0, produce the state $|\varphi\rangle|G_n \cdot \varphi\rangle^{\otimes (s+n)}$.

Induction step. Set k = s + n + 1. Given $|\varphi\rangle|G_{n+1} \cdot \varphi\rangle^{\otimes k}$

- Compute k copies of $\frac{1}{\sqrt{r_n}} \sum_{i=0}^{r_n-1} |i\rangle |z_n^i \cdot (G_{n+1} \cdot \varphi)\rangle$
- Disentangle the first registers by the method of Watrous

QFT:
$$(\frac{1}{\sqrt{r_n}}\sum_{j=0}^{r_n-1}|j\rangle|\psi_j\rangle)^{\otimes k}$$
 where $|\psi_j\rangle = \frac{1}{\sqrt{r_n}}\sum_{i=0}^{r_n-1}\omega_{r_n}^{ij}|z_n^i\cdot(G_{n+1}\cdot\varphi)\rangle.$

Suppose $j_0 \neq 0$. Then $|\langle z_n^* g \rangle^{j_0} \cdot \psi_{j_0} \rangle = \omega_{r_n}^* |\psi_{j_0} \rangle$ for $g \in G_{n+1}$. ORBIT COSET on $|\varphi\rangle$ and $|z_n^i g \cdot \varphi\rangle$ gives $z_n^i g$.

ORBIT COSET self-reducibility

Theorem. Let $N \triangleleft G$, N solvable. When $t = \Omega(s + \log|G|)$

- $OC(G, \alpha^t) \leq \{ OC(Subgroups of N, \alpha), OC(G/N, (\alpha_N)^s) \}$
- STAB $(G, \alpha^t) \leq \{ \mathsf{OC}(\mathsf{Subgroups of } N, \alpha), \mathsf{STAB}(G/N, (\alpha_N)^s) \}$

Proof for STABILIZER.

Compute $N_{|\varphi\rangle} = G_{|\varphi\rangle} \cap N$ by $\mathsf{STAB}(N, \alpha)$. Construct $H \leq G$ such that

 $N_{|\varphi\rangle} \leq H \leq G_{|\varphi\rangle}$ and $HN/N = G_{|\varphi\rangle}N/N$.

Then $H = G_{|\varphi\rangle}$ since $H \cap N = G_{|\varphi\rangle} \cap N$ and $HN/N = G_{|\varphi\rangle}N/N$.

Add to $N_{|\varphi\rangle}$ generators of $G_{|\varphi\rangle}N/N$ which are in $G_{|\varphi\rangle}$ Fact. $G_{|\varphi\rangle}N/N$ is the stabilizer of $|N \cdot \varphi\rangle$ in G/N.

- Compute V such that $\langle V \rangle = G_{|\varphi\rangle} N/N$ by $\mathsf{STAB}(G/N, (\alpha_N)^s)$
- Create input $|N \cdot \varphi\rangle^{\otimes s}$ by $OC(N, \alpha)$

• Let $z \in V$. Then $z = gn^{-1}$ for $g \in G_{|\varphi\rangle}$ and $n \in N$. In N the orbit coset of $|z^{-1}\varphi\rangle$ and $|\varphi\rangle$ is $nN_{|\varphi\rangle}$. Find n by $OC(N, \alpha)$.

Smoothly solvable groups

Definition. A solvable group is smoothly solvable if it is of bounded exponent and its derived series is of bounded length.

Fact. A smoothly solvable group G has a smooth series

 $G = G_0 \triangleright G_1 \triangleright \ldots \triangleright G_m = \{1_G\}$

where m bounded and G_i/G_{i+1} is elementary Abelian of bounded exponent.

Theorem. Let G smoothly solvable. When $t = \log^{\Omega(1)} |G|$ then ORBIT COSET can be solved for α^t in quantum time $\operatorname{poly}(\log |G|)$.

Theorem. Let G solvable such that G' is smoothly solvable. When $t = \log^{\Omega(1)} |G|$ then STABILIZER can be solved for α^t in quantum time $poly(\log|G|)$.

Corollary There is a quantum polynomial time algorithm for

- HIDDEN TRANSLATION in smoothly solvable groups
- HIDDEN SUBGROUP in solvable groups having a smoothly solvable commutator subgroup