On the Dihedral Hidden Subgroup Problem

Oded Regev Institute for Advanced Study

Hidden Subgroup Problem

- • Given a function which is constant and distinct on cosets of H≤G, find ⊦
- •Solved for Abelian groups
- • Also for certain non-Abelian groups [RöttelerBeth'98,HallgrenRussellTashma'00,GrigniSchulman VaziraniVazirani'01…]
- • Still open for many groups. In particular:
	- Symmetric group
	- Dihedral group $(Z_N \rtimes Z_2)$

Using Dihedral HSP

•Can be used to solve lattice problems [R'02]

Dihedral **HSP**

Solving Dihedral HSP

- •Two approaches:
- •Ettinger and Høyer 'OC
	- Reduction to "Period finding from samples"
- •R '02

Reduction to average case subset sum

Solving Dihedral HSP

•I dea of Ettinger and Høyer – Reduce to "Hidden Translation on $Z_{\rm N}$ ". Given an oracle that outputs states of the form $|x\rangle$ + $|x+d\rangle$ where x is arbitrary and d is fixed, find d – Take the Fourier transform

$$
\sum_{j=0}^{N-1} e^{2\pi i (jx/N)} (1 + e^{2\pi i (j d/N)}) |j\rangle
$$

Period Finding from Samples

•Find the period of the following (cos²) distribution by sampling:

- • [EH] showed that there is enough information in a polynomial number of samples
- 6• Open question in [EH]: is there an efficient solution to this problem?

Period Finding from Samples

Average Case Subset Sum

Our Results

•"Period finding from samples" is hard

- • Actually, our techniques also show that average case subset sum is hard
- •Our results are based on one main tool

Main Tool

•It is hard to distinguish between the distributions:

Main Tool

•Theorem:

The wavy distribution is indistinguishable from the uniform distribution

(i.e., it is pseudorandom)

Classical Uses of Main Tool

- • New public key cryptosystem
	- Based on worst case hardness of n^{1.5}-unique-SVP
	- $\mathcal{L}_{\mathcal{A}}$ First major improvement of the Ajtai Dwork 1996 cryptosystem (which is n 7)
- • Collision resistant hash function
	- First construction not based on Ajtai's iterative step
- •This tool might have other uses

Reducing the Main Tool toPeriod Finding from Samples

Reduction

- •Lemma: the cos² distribution is pseudorandom
- •Proof: Any distinguisher between cos² and the uniform distribution implies a distinguisher between the wavy and uniform distribution

Guess the period and add noise

Reduction

•Corollary: finding the period of the cos² distribution is hard

•Proof: Since all cos² distributions look like uniform, they all look the same

Proof of the

Main Tool

Lattices

- •Basis: $V_1,...,V_n$ vectors in Rn
- • The lattice is a₁v₁+…+a_nv_n for all integer a₁,...,a_n.
- • What is the shortest vector u ?

Lattices - not so easy

f(n)-unique-SVP (shortest vector problem)

 $ε$)^r

easy

- Promise: the shortest vector u is shorter by a factor of f(n)
- •Algorithm for (1+ε)ⁿ-unique SVP [Schnorr87]
- Believed to be hard for any n^{ϵ}
- • ⁿ1/4-unique-SVP not NP-hard [Cai,Goldreich&Goldwasser98]

1 $n^{1/4}$ n^c $(1+$

 n^c

believed hard

 $\mathsf{n}^{1/4}$

1

Dual Lattice

• Given a lattice L, the dual lattice is $L^* = \{ x | \forall y \in L, \langle x, y \rangle \in Z \}$

Techniques in the Proof

- •Reduction to the decision problem
- •Use of tools from harmonic analysis
- •Reduction to one dimension

Proof Outline

Decision-SVP

- •Given a $n^{1.5}$ unique lattice, and a prime p>n $^{1.5}$
- •Assume the shortest vector is:

 $u = a_1V_1+a_2V_2+...+a_nV_n$

•Decide whether a_1 is divisible by p

The Reduction

- •I dea: reduce the coefficients of the shortest vector
- •If we find out that $p|a_1$ then we can replace the basis with pv_1 , v_2 ,…, v_n .
- •u is still in the new lattice

 ${\sf u}$ = $({\sf a_1}/{\sf p}){\scriptstyle \cdot}{\sf p}$ v $_1$ + ${\sf a_2}$ v $_2$ + … + ${\sf a_r}$ v n

•The same can be done whenever $p|a_i$ for some i

The Reduction

- •But what if $p\mu a_i$ for all i? |
|
|
- •Consider the basis v_1 , v_2 - v_1 , v_3 ,..., v_r
- • The shortest vector is $u = (a_1 + a_2)v_1 + a_2(v_2 - v_1) + a_3v_3 + ... + a_r$ v n
- •So the first coefficient is a_1 + a_2
- • Similarly, we can get the coefficient to be a_1 - \lfloor p/2 $\lceil a_2 \rceil$..., a_1 - a_2 , a_1 , a_1 + a_2 , ... , a_1 + \lfloor p/2 \rfloor a_2
- • One of them is divisible by p, so we choose it and continue

Still a lot left

Decision-SVP

- •Given a $n^{1.5}$ unique lattice, and a prime p>n $^{1.5}$
- •Assume the shortest vector is:

 $u = a_1V_1+a_2V_2+...+a_nV_n$

•Decide whether a_1 is divisible by p

n-dimensional distributions

. Distinguish between the distributions:

Wavy

Decision-SVP

The lattice L'

• Consider the lattice L'spanned by pv₁, v₂, ..., v_n: \bullet If $p[a_1,$ then $u \in L'$:

The lattice L'

• Consider the lattice L'spanned by pv₁, v₂, ..., v_n: \cdot If $p\sqrt{a_1}$, then $u \notin$ L' :

Creating the Distribution

- •Choose a point randomly from L'
- •Perturb it by a Gaussian of radius √r

Analyzing the Distribution

- • Theorem: (using [Banaszczyk'93]) The distribution obtained above depends only on the points in L' of distance √n from the origir (up to an exponentially small error)
- •Therefore, if $p|a_1$, then the distribution is determined by multiples of u and is therefore wavy on hyperplanes orthogonal to u
- 36•If $p \nmid a_1$, then the distribution is determined by the origin and is therefore uniform |
|
|

Almost there

n-dimensional distributions

. Distinguish between the distributions:

Wavy

Main tool

•Distinguish between the distributions:

Reducing to 1-dimension •First attempt: sample and project to a line

Reducing to 1-dimension

- •But then we lose the wavy structure!
- •We can only project from points very close to the line

Reducing to 1-dimension

- • Solution: The distribution is periodic modulo the basic parallelepiped of L'
- •We construct a line that is 'dense'

Conclusion

- •We presented the proof of our main tool
- • The main tool implies that the two attempts to solve dHSP fail
- • Classically, it implies strong cryptographic constructions

Open Questions

- •Find other uses of the main tool
- • Characterize algorithms that fail for the dHSP
- •Find other groups with the same behavior