On the Dihedral Hidden Subgroup Problem

Oded Regev Institute for Advanced Study

Hidden Subgroup Problem

- Given a function which is constant and distinct on cosets of H≤G, find H
- Solved for Abelian groups
- Also for certain non-Abelian groups
 [RöttelerBeth'98,HallgrenRussellTashma'00,GrigniSchulman VaziraniVazirani'01...]
- Still open for many groups. In particular:
 - Symmetric group
 - Dihedral group ($Z_N \rtimes Z_2$)

Using Dihedral HSP

Can be used to solve lattice problems [R'02]

Solving Dihedral HSP

• Two approaches:

- Ettinger and Høyer '00
 - Reduction to "Period finding from samples"
- R '02

- Reduction to average case subset sum

Solving Dihedral HSP

I dea of Ettinger and Høyer:

 Reduce to "Hidden Translation on Z_N":
 Given an oracle that outputs states of the form |x>+|x+d> where x is arbitrary and d is fixed, find d
 Take the Fourier transform

$$\sum_{j=0}^{N-1} e^{2\pi i (jx/N)} (1 + e^{2\pi i (jd/N)}) | j \rangle$$

Period Finding from Samples

 Find the period of the following (cos²) distribution by sampling:

- [EH] showed that there is enough information in a polynomial number of samples
- Open question in [EH]: is there an efficient solution to this problem?

Period Finding from Samples Average Case Subset Sum

Our Results

"Period finding from samples" is hard

- Actually, our techniques also show that average case subset sum is hard
- Our results are based on one main tool

Main Tool

 It is hard to distinguish between the distributions:

Main Tool

• Theorem:

The wavy distribution is indistinguishable from the uniform distribution

(i.e., it is pseudorandom)

Classical Uses of Main Tool

- New public key cryptosystem
 - Based on worst case hardness of n^{1.5}-unique-SVP
 - First major improvement of the Ajtai
 Dwork 1996 cryptosystem (which is n⁷)
- Collision resistant hash function
 - First construction not based on Ajtai's iterative step
- This tool might have other uses

Reducing the Main Tool to Period Finding from Samples

Reduction

- Lemma: the cos² distribution is pseudorandom
- Proof: Any distinguisher between cos² and the uniform distribution implies a distinguisher between the wavy and uniform distribution

Guess the period and add noise

Reduction

 Corollary: finding the period of the cos² distribution is hard

 Proof: Since all cos² distributions look like uniform, they all look the same

Proof of the

Main Tool

Lattices

- Basis: v₁,...,v_n vectors in Rⁿ
- The lattice is

 a₁v₁+...+a_nv_n for all

 integer a₁,...,a_n.
- What is the shortest vector u ?

Lattices – not so easy

f(n)-unique-SVP (shortest vector problem)

- Promise: the shortest vector u is shorter by a factor of f(n)
- Algorithm for (1+ε)ⁿ-unique SVP [Schnorr87]
- Believed to be hard for any n^c
- n^{1/4}-unique-SVP not NP-hard [Cai,Goldreich&Goldwasser98]

Dual Lattice

Given a lattice L, the dual lattice is
 L^{*} = { x | ∀y∈L, <x,y>∈Z }

Techniques in the Proof

- Reduction to the decision problem
- Use of tools from harmonic analysis
- Reduction to one dimension

Proof Outline

Decision-SVP

- Given a n^{1.5} unique lattice, and a prime p>n^{1.5}
- Assume the shortest vector is:

 $u = a_1 v_1 + a_2 v_2 + \dots + a_n v_n$

Decide whether a₁ is divisible by p

The Reduction

- I dea: reduce the coefficients of the shortest vector
- If we find out that p|a₁ then we can replace the basis with pv₁,v₂,...,v_n.
- u is still in the new lattice:

 $u = (a_1/p) \cdot pv_1 + a_2v_2 + ... + a_nv_n$

 The same can be done whenever p|a_i for some i

The Reduction

- But what if p₁a_i for all i ?
- Consider the basis v₁, v₂-v₁, v₃,..., v_n
- The shortest vector is $u = (a_1 + a_2)v_1 + a_2(v_2 - v_1) + a_3v_3 + ... + a_nv_n$
- So the first coefficient is a_1+a_2
- Similarly, we can get the coefficient to be $a_1-\lfloor p/2 \rfloor a_2, ..., a_1-a_2, a_1, a_1+a_2, ..., a_1+\lfloor p/2 \rfloor a_2$
- One of them is divisible by p, so we choose it and continue

Still a lot left

Decision-SVP

- Given a n^{1.5} unique lattice, and a prime p>n^{1.5}
- Assume the shortest vector is:

 $u = a_1 v_1 + a_2 v_2 + \dots + a_n v_n$

Decide whether a₁ is divisible by p

n-dimensional distributions

Distinguish between the distributions:

Wavy

Decision-SVP

The lattice L'

Consider the lattice L' spanned by pv₁, v₂,...,v_n:
If p|a₁, then u ∈ L':

The lattice L'

Consider the lattice L' spanned by pv₁, v₂,...,v_n:
If p₁a₁, then u q L':

Creating the Distribution

- Choose a point randomly from L^{*}
- Perturb it by a Gaussian of radius √n

0 0.5 1 1.5

Analyzing the Distribution

- Theorem: (using [Banaszczyk'93])
 The distribution obtained above depends only on the points in L' of distance √n from the origin (up to an exponentially small error)
- Therefore, if p|a₁, then the distribution is determined by multiples of u and is therefore wavy on hyperplanes orthogonal to u
- If $p_{1}a_{1}$, then the distribution is determined by the origin and is therefore uniform ³⁶

Almost there

n-dimensional distributions

Distinguish between the distributions:

Wavy

Main tool

Distinguish between the distributions:

Reducing to 1-dimension First attempt: sample and project to a line

Reducing to 1-dimension

- But then we lose the wavy structure!
- We can only project from points very close to the line

Reducing to 1-dimension

- Solution: The distribution is periodic modulo the basic parallelepiped of L^{*}
- We construct a line that is 'dense' :

Conclusion

- We presented the proof of our main tool
- The main tool implies that the two attempts to solve dHSP fail
- Classically, it implies strong cryptographic constructions

Open Questions

- Find other uses of the main tool
- Characterize algorithms that fail for the dHSP
- Find other groups with the same behavior