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Overview

1. What’s the point of this story?

2. Why a representation theorem for quantum
operations?

3. The classical de Finetti theorem

4. The quantum de Finetti theorem

5. Bayesian quantum process tomography

6. De Finetti theorem for quantum operations
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What’s the point of this story?

No randomness in —
no randomness out!

Any probability assignment p to the outcome 0
depends on some prior probability assignment.

Bayesian probability theory: p is a degree of belief,
not part of physical reality.
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Does quantum mechanics help?

It certainly looks like it:
A measurement in the basis |±〉 = 1√

2
(|0〉 ± |1〉)

yields the result +. The post-measurement state is

F(ρ) =
|+〉〈+|ρ|+〉〈+|

〈+|ρ|+〉 = |+〉〈+| .

A subsequent measurement in the 0-1 basis gives
p = Pr(0) = 1

2 .
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Does quantum mechanics help?

It certainly looks like it:
A measurement in the basis |±〉 = 1√

2
(|0〉 ± |1〉)

yields the result +. The post-measurement state is

F(ρ) =
|+〉〈+|ρ|+〉〈+|

〈+|ρ|+〉 = |+〉〈+| .

A subsequent measurement in the 0-1 basis gives
p = Pr(0) = 1

2 .

F is part of physical reality =⇒ |+〉 is part of
physical reality =⇒ p is part of physical reality.
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Two kinds of probability?

Consider a mixture

ρ = p|+〉〈+| + (1 − p)|−〉〈−| ,

where p is a Bayesian degree of belief, and |±〉〈±|
are elements of physical reality.

But ρ can be rewritten

ρ = q|ψ〉〈ψ| + (1 − q)|φ〉〈φ| .

What kind of probability is q?

Preferred decomposition of density operators?
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What if . . .

. . . all probabilities in quantum mechanics are
taken to be Bayesian degrees of belief?

Then some quantum operations do not represent
real states of affairs.
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What if . . .

. . . all probabilities in quantum mechanics are
taken to be Bayesian degrees of belief?

Then some quantum operations do not represent
real states of affairs.

The argument:

F is part of physical reality =⇒ |+〉 is part of
physical reality =⇒ p is part of physical reality.

Equivalently,

p is not part of physical reality =⇒ |+〉 is not part of
physical reality =⇒ F is not part of physical reality.
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A Bayesian version of quantum
process tomography?

Quantum process tomography: Determine a
quantum operation by making measurements on
the output for a set of well-chosen inputs.

What does it mean to determine an unknown
quantum operation, F , if F is not part of physical
reality?

Needed: A Bayesian formulation of quantum
process tomography.
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Classical tomography

Result in 10 throws:

1 times k = 1,
4 times k = 2,
2 times k = 3,
2 times k = 4,
1 times k = 5,
0 times k = 6.

Question: What probability p do you assign to a 6
in the next throw?

MSRI 2002 – p.9



Royal Holloway
University of London

Classical tomography

Result in 10 throws:

1 times k = 1,
4 times k = 2,
2 times k = 3,
2 times k = 4,
1 times k = 5,
0 times k = 6.

Question: What probability p do you assign to a 6
in the next throw?

Answer: It depends on your prior.
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Classical tomography

Result in 10 throws:

1 times k = 1,
4 times k = 2,
2 times k = 3,
2 times k = 4,
1 times k = 5,
0 times k = 6.

Question: What probability p do you assign to a 6
in the next throw?

Answer I: p = 1/6 if you believe that the die is fair.
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Classical tomography

Result in 10 throws:

1 times k = 1,
4 times k = 2,
2 times k = 3,
2 times k = 4,
1 times k = 5,
0 times k = 6.

Question: What probability p do you assign to a 6
in the next throw?

Answer II: p = 1/12 given a totally uninformative
prior (Laplace’s rule of succession).
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Classical tomography

Result in 10 throws:

1 times k = 1,
4 times k = 2,
2 times k = 3,
2 times k = 4,
1 times k = 5,
0 times k = 6.

Question: What probability p do you assign to a 6
in the next throw?

Answer III: p = 0 if you know the die came from a
box that contains only trick dice of two types: type
A never comes up 1, type B never comes up 6.
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Exchangeability (binary case)

Let xk ∈ {0, 1} be binary random variables.

p(n)(x1, . . . , xn), n = 1, 2, . . . form an exchangeable
sequence if

(i) (symmetry) p(n) is permutation invariant;

(ii) (extendibility) p(n) is the marginal of p(n+1).

For given N , we say that p(N)(x1, . . . , xN ) is
exchangeable if it is part of an exchangeable
sequence.

MSRI 2002 – p.10
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De Finetti’s representation theorem
(binary case)

p(N)(x1, . . . , xN ) is exchangeable

if and only if

p(N)(x1, . . . , xN ) =

∫ 1

0
P (p) pk(1 − p)N−kdp

where P (p) is unique and k is the number of
zeroes in (x1, . . . , xN ).
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Bayesian (classical) tomography

(i) Start from an exchangeable prior for N +M
trials.

(ii) Collect data for N trials.

(iii) Use Bayes’ rule to obtain (posterior)
probabilities for the remaining M trials.

Two agents starting from different priors will
always converge to a joint posterior in the limit of
large N (under mild assumptions about the priors).

Key assumption: Exchangeability.
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Exchangeability for quantum
systems

A state ρ(N) of N systems is exchangeable if it is a
member of an exchangeable sequence ρ(n), i.e.,

(i) (symmetry) each ρ(n) is invariant under
permutations of the n systems on which it is
defined; and

(ii) (extendibility) ρ(n) = trn+1ρ
(n+1) for all n, where

trn+1 denotes the partial trace over the (n+ 1)th
system.
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Quantum de Finetti Theorem

ρ(N) is exchangeable

if and only if

ρ(N) =
∫

dρ p(ρ) ρ⊗N =
∫

dρ p(ρ) ρ⊗ · · · ⊗ ρ,

where p(ρ) ≥ 0 is unique.

(Hudson, Moody 1976; Caves, Fuchs, RS 2002)
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Bayesian quantum tomography

ρ(N+M) =

∫

dρ p(ρ) ρ⊗(N+M)

ρ(M) =

∫

dρ p(ρ|~α) ρ⊗M

measure N subsystems

get outcome ~α

p(ρ|~α) given by the quantum Bayes rule.

MSRI 2002 – p.15
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Bayesian quantum tomography

ρ(N+M) =

∫

dρ p(ρ) ρ⊗(N+M)

ρ(M) =

∫

dρ p(ρ|~α) ρ⊗M

measure N subsystems

get outcome ~α

Two agents starting from different priors will always
converge to a joint posterior in the limit of large N
(under mild assumptions about the priors).
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Quantum process tomography:
limited resources

Any finite version of quantum process tomography
depends ineluctably on a prior.

Wanted: A representation theorem for priors in the
space of quantum operations on N copies of a
system.
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Bayesian quantum process
tomography

We describe N uses of a quantum channel by a
quantum operation (trace-preserving cpm)

Φ(N) : L(H⊗N ) −→ L(H⊗N )

1. We start from an exchangeable prior Φ(N+M).

2. We send N +M particles in a state
ρin = σ(N) ⊗ ρ(M) through the channel.

3. The output state is ρout = Φ(N+M)(ρin).

4. We do measurements on the first N particles.

5. We deduce Φ(M)(ρ(M)).

MSRI 2002 – p.17
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Exchangeability
for quantum operations

A sequence Φ(n) of quantum operations defined on
L(H⊗n) is exchangeable if

1.) (symmetry) Φ(n)(ρ(n)) = π
(

Φ(n)(π−1ρ(n))
)

for any permutation π of the n systems and for any
state ρ(n);

2.) (Extendibility) Φ(n)(ρ(n)) = trn+1

(

Φ(n+1)(ρ(n+1))
)

for any states ρ(n), ρ(n+1) such that ρ(n) = trn+1ρ
(n+1).

MSRI 2002 – p.18
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De Finetti representation for
quantum operations

Φ(N) is exchangeable (i.e., part of an
exchangeable sequence)

if and only if

Φ(N) =

∫

dΦ p(Φ) Φ⊗N

where the integral ranges over all single-system
quantum operations Φ : L(H) → L(H), and where
p(Φ) ≥ 0 is unique.
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De Finetti for quantum operations
proof sketch (1)

Φ is a quantum operation on Hd if it is a
trace-preserving completely positive map (cpm),
i.e.,

Φ is a linear map on L(Hd) with the properties

1.) Φ(ρ) is a density operator for any density
operator ρ on Hd;

2.) (I ⊗Φ)(ρ(2)) is a density operator for any density
operator ρ(2) on Hd′ ⊗Hd (d′ arbitrary).

MSRI 2002 – p.20
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De Finetti for quantum operations
proof sketch (2)

Let |ψ〉 =
1√
d

d
∑

j=1

|ej〉 ⊗ |ej〉 ∈ Hd ⊗Hd

be a maximally entangled state.

Theorem (Jamiołkowski):

A linear map Φ on Hd is a cpm

if and only if

(I ⊗ Φ)(|ψ〉〈ψ|) is a positive operator.
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De Finetti for quantum operations
proof sketch (3)

Denote by ρ(N) the Jamiołkowski density operator
corresponding to the quantum operation Φ(N).

Φ(N) exchangeable

=⇒ ρ(N) exchangeable

=⇒ unique de Finetti representation for ρ(N)

=⇒ unique de Finetti representation for Φ(N) .
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De Finetti for quantum operations
proof sketch (4)

There exist non-trace-preserving cpm’s Φ such
that (I ⊗ Φ)(|ψ〉〈ψ|) is a density operator.

How does one see that the domain of the integral

Φ(N) =

∫

dΦ p(Φ) Φ⊗N

includes only trace-preserving cpm’s?
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De Finetti for quantum operations
proof sketch (5)

Φ(N) =
∑

i

pi Φ⊗N
i , pi > 0,

implies 1 =
∑

i

pi

(

tr[Φi(ρ)]
)N for all ρ.

Assume tr[Φ1(ρ)] 6= 1 for some ρ.

Then there is k such that tr[Φk(ρ)] > 1.

Then 1 ≥ pk

(

tr[Φk(ρ)]
)N → ∞

MSRI 2002 – p.24
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Bayesian quantum process
tomography

We describe N uses of a quantum channel by a
quantum operation (trace-preserving cpm)

Φ(N) : L(H⊗N ) −→ L(H⊗N )

1. We start from an exchangeable prior Φ(N+M).

2. We send N +M particles in a state
ρin = σ(N) ⊗ ρ(M) through the channel.

3. The output state is ρout = Φ(N+M)(ρin).

4. We do measurements on the first N particles.

5. We deduce Φ(M)(ρ(M)).
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States that are not exchangeable

1.) ρ = ρ1 ⊗ ρ2 is not exchangeable for ρ1 6= ρ2.

2.) ρGHZ = 1
2(|000〉 + |111〉)(〈000| + 〈111|) is not

exchangeable:

there exists no permutation-invariant ρ(4) such that
ρGHZ = tr4(ρ

(4)).
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Quantum Bayes rule: detail

p(ρ|~α) =
p(ρ)p(~α|ρ)

pα
,

where p(~α|ρ) = tr
(

ρ⊗N Eα1
⊗ · · · ⊗ EαN

)

,

~α = (α1, . . . , αN ),

{Ek} is a POVM,

and pα =

∫

dρ p(ρ) p(~α|ρ) .
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Jamiołkowski operator

Matrix elements of Φ:

Φ(|ej〉〈ek|) =
∑

l,m

Slj,mk|el〉〈em|

Matrix elements of Jamiołkowski’s ρ:

ρ = (I ⊗ Φ)(|ψ〉〈ψ|)

=
1

d

∑

l,j,m,k

Slj,mk(|ej〉 ⊗ |el〉)(〈ek| ⊗ 〈em|)

MSRI 2002 – p.28
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Quantum de Finetti: proof sketch

Let {E1, . . . , Ed2} be a minimal informationally
complete POVM on d-dim. Hilbert space Hd.

Then there is a one-to-one correspondence
between states ρ and probabilities (p1, . . . , pd2):

tr(ρE1) = p1

tr(ρE2) = p2

. . .

tr(ρEd2) = pd2

{E1, . . . , Ed2} form a basis of the d2-dimensional
vector space L(Hd).

MSRI 2002 – p.29
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Measurements on N systems

Results are random variables αk ∈ {1, . . . , d2} with
distribution

p(N)(α1, . . . , αN ) = tr
(

ρ(N)Eα1
⊗ · · · ⊗ EαN

)

ρ(N) exchangeable

=⇒ p(N) exchangeable

=⇒ classical de Finetti representation for p(N)

=⇒ quantum de Finetti representation for ρ(N).
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(

ρ(N)Eα1
⊗ · · · ⊗ EαN

)
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Construction of a minimal ICPOVM
(1)

1.) Let {|ej〉} be an orthonormal basis of Hd. A
basis of L(Hd) is then given by the d2 projectors Πα

of the form

Πα = |ej〉〈ej |

or Πα = 1
2

(

|ej〉 + |ek〉
)(

〈ej | + 〈ek|
)

or Πα = 1
2

(

|ej〉 + i|ek〉
)(

〈ej | − i〈ek|
)

MSRI 2002 – p.31
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Construction of a minimal ICPOVM
(2)

2.) G =
d2

∑

α=1

Πα is invertible.

3.) X → G−1/2XG−1/2 is an invertible linear
transformation.

4.) I =

d2

∑

α=1

G−1/2ΠαG
−1/2

5.) Eα = G−1/2ΠαG
−1/2 form a minimal ICPOVM.

MSRI 2002 – p.32
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