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"'Ql—lantum Source Codingl

Pr ™~ Pu, P S S<Cd>

:011:1 X Pay ™ %Y P, ~ p.’l:lpa:g *cPuy,

(= px,) (= px,) ‘En D‘1
a1 @1 o \
x, = (v, . T) d“ A y
e (Encode) \L- /-:n- N -
E,: px, — B.(pz,) € S(C") (4, <d")
e (Decode)

D, : E.(pzx,)— Dno E,(pxz,) € S(Cd@”)

e Optimize E, and D,, to minimize

1
lim —logd,  Compression Tafe

n—0o0 M,

subject to

Z dist(pa,, Dn © E'n(pwu,» —0 (n— )

:I:’,L

e Here, we use Bure’s distance

dist(p,0) = B(p,0) =1 —\/tx p%ap% (1)



Pure State Source] ( Seure is kron)

Theorem 1 If p, is pure

lim —l%d > S(p) (2)
n—oo M,
and equality can be achived. Here, ei%gen vector

[ o557
p—Zp Pa —Z(Me e 7

F — &%envalue 0 P
S(p) = —trplogp
e (Asymptotically) optimal encoder is projection en-

tropy typical subspace, and decoder is just iso-
metric mjection.

e I'ntropy typical subspace

@ U‘"’@ Hy (3)

v n: lfl_( H)<S(p)+e

where H,, is elgenspa\l\n f)[ p¥" corresponding to the
eigenvalue H _1q }J. ;

e V\ \ Shannn  entopy
b s i (9) = -3
8 Jypia& H(9): 5 5 *0°? &




Fixed Length Universal Codel

e Source 1s unknown

o Compress by the rate IR.
@ o If S(p) < R, successfully compressed by the rate R.

e Otherwise fails
Assume S(F') is known or canbe estimaled

 Jozsa-Horodeckis Code]

e Iincoder is the projection Q)¢ , onto the following sub-

space Entropic Typiui

n _ ubspace,

spanc{U"| ¢) - U - a unitary, | ¢) € pubspace (3)]}.
(4)

e This subspace covers all the possible entropy typical

subspace whatever the eigenstates of p are. (= state
do not collapse)

e Achivement of the rate is proven by use of group rep-
resentation theory

' Typial Subspace
o UPUF



Variable Length Universal Code (I)

e Source is unknown
e Compress by the rate of S (p)-

o Tu classical case, given fixed length universal universal
code, it is trivial to construct a variable length univer-

<al code. For we can observe state as inally as needed.
(69 SE) s estimated precisely )
o In quantum case, however, observation of the state

collapse the state.
r/\“'—“\
In generall

How to obsgfve state without collaspe 7

e For a while, we consider only state estimation, and
later conte back to source coding.



 State Estimation |

o p®" is given and p is unknown.

e [istimate state so that estimate of the state converges
to p (in probability, in in norm ). in M

® Describe the estimation by a POVM measurememal
{ M3} which returns estimate p.

@r

— Do POVM measurement {my} for n times. then.
#of w “~in H
tr pm,, 1s estimated by

n

exomples

of Mz )

— Listimate p by
* solving system of equations

# of w

n
* Maximally Likelihood Estimate ete.

* In the following, uniform continuity of the map

# of w .

—— — p 15 assumed.

— Lo optimize estimate, one should change measure-

ment adaptively, and collective measurement should
be used.

trmyp =

hese kinds of estimation demolish

state very mucg!ﬂ. )

1§ careless ly done.
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rTcndor Measurement

where Us,, 1s 6-ball centered at o, and =

An
o, = mesUs s measun
DPVOIM.

e Average distortion 1s evaluated as :

[\/lCN

Average distortion < 1 — ~Z (tr Z M p

a /)GU(S o

o Fix p and {vu}(vn — 0), consider
o dar -t N n @n
B, = mes{o : t1 E M:p "> — .}
/A)EU(S’U
then, if {v,} 1s appropriately chosel,

Average distortion < 1 — —@—I( —v,) — 0

a’fb

e This urgument 1s true even if & converges to 0 very
slowly as n 1mcreases.

F LT e g

=i !
n D<S <3



Efficiency of Tender Measurement I

e Mean of diviation Ef,[d;stf-o F’] ~ —E

lim NE(,[dIST 0,p)
N=00 Mmoo

e [irror exponent

lim lm ——log Prob{dist(p, p) > €}

el0 n—oo ne2 ww___ x &
Conjecture 1 Prob {dist (p, p)>€) —
~ €

(1) In terms of m
measurement 18 Lmpossi
and mean deviation of tendor measurement decrease

much slower than 1 N

(2) In terms Ofw optimal 5eparable/collectzve
measurement is 20551,_6[6 by tender measurement.

((1)-- 0% (2)-- 99% )

1, optimal separable/collective
e by tender measurement,

* (1) 0 frwe for the estimation of a scalar por e

- v - 1' 1
S +'~ 150 Lo s LA . e Cale X 4
) (ly l s ‘.‘n’ L!" lr"irr‘de: ‘”}e{:a&?,ﬂ‘a_?jlﬂ»fJ r* :



- T QA :\? : 1'C"\.Lf("’_,
- N .
Paradox 77 | S X uncertainy

-

( Given p®™ to which we apply tender mea-
surement. This does not change the state.
S0, we can do the same measurement again.
Still, this does not change the state. S0, we
can repeat this for many times, and finally
\obtain perfect estimate of p. )

This cannot happen because ...

(1) In case that we use mean deviation as a mea-
sure, degree of demolishment per mesurement
and speed of convergence of error is in trade-
off.

(2) In case that we use, even tender measurement
destroys state too much.



Variable Length Universal Code (IAI)I

e Use tendor measurement and estimate p.

— [t is shown that this does not change state by almost
the same argument as state estimation case.

e Use Schmacher Code or JHHH code.

— evaluation of performance of Schumacher code is a
bit harder, because noise on estimated eigenstate
must be considered, too.

e~ 1deal F\'t{)s..;'fbr

- Bstim xted %\C(fb r




\__Optinlal Variable Length Universal Cod

e There are many kinds of Variable Length Universal
Code which achives von Neumann entropy, depending
on tendor measurement and on conventional code that
you use. (and other kinds of codes, like Jozsa-Presnell
cade quant-ph/0210196.) -n@
~ e

measure : minimum exponent of overflow probability,
F o i e

e Which one is optimal 7 J

— e

min L — log ProbU,,U*{Lomplessnon rate > R}
U n—oo 7

L

! e\qenvec rﬁ}- 4 rJ a il 3(”3{’\%

e Note that compression rate gives consistent estimate
of von Neumann entropy of the source. Hence, by ap-
plication of hypothesis test theory by Nagaoka-Ogawa,

we obtalon the upper bound to the efficiency:

. )
min lim — log Proby i+« {compression rate > R}

U n—oo 7 i
< inf |
lkw 0:51(2)>R <pHO-> )

e 'tender measurement’+ conventional code” type scheme
canunot be optimal. For this destroys state too much to
give optimal large deviation exponent of estimamate
of von Neumann entropy at the second measurement.



e 5o, we must do this only by one measurement.

e Optimal protocol should have ipvariancy by action of
upitary group, for eigenstates of o is unknown.
Optimal protocol (Hayashi-Matsumoto
quant-ph /0202001, 0209124 )

e Consider encoder Q;, pof JHHH code.
e Define

. NE €
Pn,R T Qn,R - Qn,R--f'racln'

e Then, the measurement

{P, k1t
gives consistent estimate of entropy.

e Construct tender mesurement from this measurement.

e Then, this tender measurement gives optimal estimate
of source entropy, and output state is compressed by
optimal rate. |

AL

&—— JHHY >
.y TR ) { P".ﬁ }k
+ =
Tender HH Code 15

1) - %mu,p Imaﬁmt
hHy For- 3 HHH s roap inwsic




y Ehfan‘]emen't Concentration
¢ Source Codh,.

S(_,\\\“\qd\er Co(le_ “(=$. “Sfahdﬂl'd R‘D"’(o' "
o4 Eh"'m,lchcn'(

Concentration
ProjecTions evito

et4enspoces of Pan

Pryection onto
Ty picoﬁ Subs{xwa

Sharper &
more distructive
»

HM (de ‘= Q

Un‘.ver.so.ﬂ distortien
'J'V'Qe Qon(en'l‘m-’-;m_



Conclusims & Diseussions

(1) Tender Measurement is usefuld .
in onstruction of universal code.

2y To achieve optimal, GQrovup symmetric
shructure must be used 'hln universa code@

(3> By pawmllel congtruction,” opﬁmul
unversal concentration pottol is given,

(a) The poperties of Tender messurements
ae yet 1o be known .
. Tradd - 04} between efficiency
. distortion

. classicll fimit of fuantum mechanics (4
(sq MAacro sco‘).‘c body + Tender mea suréne

ele .
(s> Universal code for markovian sogce.

c$. PIJ code.



