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• In classical probabilistic computing, 
“derandomization” is usually taken to mean 
the replacement of random coin flips with 
something deterministic. The consequence 
(and ultimate objective) is to turn probabilistic 
algorithms into deterministic ones.

• In the quantum setting, I take 
“derandomization” to mean turning 
probabilistic algorithms into deterministic or 
“exact” algorithms.



• They succeed with probability at least ¼.

• If the algorithm succeeds, we can compute 
the success probability exactly.

• We can efficiently and deterministically tell 
when they have succeeded.

I consider algorithms satisfying 3 properties:



In Brassard and Hoyer’s paper (quant-ph/9704027) on 
making Simon’s algorithm exact, they introduce 
two essential ingredients:

• They tweek each iteration of algorithm to give a 
linearly independent vector orthogonal to hidden 
subgroup with probability exactly ½.

• They introduce a generalized version of amplitude 
amplification and get it to work exactly in the case 
that we know the success probability.



• Consider any algorithm       (turned into a 
unitary quantum algorithm) that succeeds 
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• Pick
��

�
��

� −=
2
1

4
~

θ
πk

• Høyer (quant-ph/0006031) and Brassard and Høyer
suggest strategies that apply a modified 
quantum search iterate a total of      times.

• Earlier work (BHMT, quant-ph/0005055) suggests 
another strategy that also works.
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1. We don’t a priori know the success 
probability.

2. If we know the probability, we don’t know 
how to efficiently and exactly implement the 
necessary phase shifts or coin flips exactly 
within the computing model.

Two problems:



Possible solution: Massage the algorithm to work 
with a known probability.

1. We don’t a priori know the success probability.

Technique 1: Tweek the algorithm to make it 
easier to analyze the success probability.

Technique 2: Reject some of the successful 
outcomes with an appropriate probability.



• It suffices to be able to compute the success 
probability once we obtain a successful outcome
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• Should our computing model allow us to 
implement the required rotation or quantum coin 
flip? (Adleman, Demarrais and Huang, “Quantum Computability”, 
define a notion of EQP relative to various quantum Turing machines.)

• For now, let’s assume that we can deterministically 
compute the required one-qubit gate to m bits of 
precision in time polynomial in m and the input size.

2. Once we know the probability, we don’t know how 
to efficiently and exactly implement the 
necessary phase shifts or quantum coin flips 
exactly within the computing model.



• Consider a black-box problem with an algorithm 
that on input size n makes N queries and uses T 
other gates and satisfies the three criteria 

Is this attempted derandomization technique 
better than standard Chernoff bound methods?

• They succeed with probability at least ¼.

• We can efficiently and deterministically tell when they have 
succeeded.

• If the algorithm succeeds, we can compute the success 
probability exactly.

• Let’s amplify the success probability to  ε−
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• I claim that we should be allowed to use any 
one-qubit gate G for which we specify a 
deterministic classical Turing machine TG that 
computes the amplitudes of the gate with m 
bits of precision in time polynomial in m and 
the length of the description of TG.

• In other words, we can assume that we 
have an oracle that maps

ψψ GTT GG α



• We need something like this to have a robust 
definition of exact quantum computation, i.e. 
one that does not depend on a arbitrary 
choice of universal gate set.

• We have already effectively seen this, but a 
finite number of times when defining a 
particular quantum computer (e.g. [BV97])



• Why not allow it any time, as long as we 
charge appropriately?

• In the uniform family of circuits model, why 
not define a finite set of gates for each 
circuit produced?



• The quantum Fourier transform for any 
product of cyclic groups.

• Finite Abelian HSPs

• Order-finding and integer factorization



Recall the algorithm for splitting N into two non-trivial 
factors (CEMM version of Kitaev approach):
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For a fixed where gcd(a,N)=1 a
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For a fixed where gcd(a,N)=1 a
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(We will ultimately only accept these outcomes)
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After continued fractions, and test of denominator:
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Attempted factorization:
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we could efficiently:

1. Redo the eigenvalue measurements exactly and 
accept only the two values     and          satisfying  

2. efficiently compute all the relevant probabilities 
needed to derandomize.

If we had the full prime factorization of
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Keep splitting      into factors until we have a 
prime power factorization. Then continue 
factoring and so on until we attempt a 
total of splittings. 

(Once we are down to 1, we can trivially “split” 1 
into 1=1x1.)

N

( )Nφ
[ ] 1log2 2 +N



•Ideally, we would like each splitting to work with 
probability exactly ½ and we would keep only the 
computational paths that succeeded at least    

times (which is more than enough 
to get the full factorization of                                )

•Note that this event would occur with probability 
exactly ½. 

•Along all such successful paths, we doctor the 
probabilities to give such a distribution.

•We can now easily derandomize the algorithm.

[ ] 1log2 +N
Λ),(, NN φ



• Have introduced additional criteria under 
which we can quantumly derandomize
algorithms

• With a reasonable computing model, this 
allows the derandomization of several 
existing BQP quantum algorithms


