
Michele Mosca

Perimeter Institute is a community of
theoretical physicists dedicated to
investigating fundamental issues in
theoretical physics.

www.perimeterinstitute.ca

• In classical probabilistic computing,
“derandomization” is usually taken to mean
the replacement of random coin flips with
something deterministic. The consequence
(and ultimate objective) is to turn probabilistic
algorithms into deterministic ones.

• In the quantum setting, I take
“derandomization” to mean turning
probabilistic algorithms into deterministic or
“exact” algorithms.

• They succeed with probability at least ¼.

• If the algorithm succeeds, we can compute
the success probability exactly.

• We can efficiently and deterministically tell
when they have succeeded.

I consider algorithms satisfying 3 properties:

In Brassard and Hoyer’s paper (quant-ph/9704027) on
making Simon’s algorithm exact, they introduce
two essential ingredients:

• They tweek each iteration of algorithm to give a
linearly independent vector orthogonal to hidden
subgroup with probability exactly ½.

• They introduce a generalized version of amplitude
amplification and get it to work exactly in the case
that we know the success probability.

• Consider any algorithm (turned into a
unitary quantum algorithm) that succeeds
with probability ()θ2sin=p

A

• Define χUAAUQ 1
0

−−=
• Then the algorithm

succeeds with probability
000 ΛAQ k

()θ)12(sin 2 += kp

() () failuresuccessA θθ cossin000 +=Λ

() () failureksuccesskAQk θθ)12(cos)12(sin000 +++=Λ

• Would like
2
1

4
−=

θ
πk

• But this might not be an integer.

• Pick
��

�
��

� −=
2
1

4
~

θ
πk

• Høyer (quant-ph/0006031) and Brassard and Høyer
suggest strategies that apply a modified
quantum search iterate a total of times.

• Earlier work (BHMT, quant-ph/0005055) suggests
another strategy that also works.

k~

(Høyer)

• Pick
��

�
��

� −=
2
1

4
~

θ
πk

• Pick satisfying θθ ≤
~ () 1

~
)1~2(sin 2 =+ θk

• Prepare the qubit

()
()

()
() 0sin

~
sin11

sin

~
sin

2

2

θ
θ

θ
θ −+

i.e. Define

() ()() ()
()

()
()

() () ()
()

() ()
()

()
() �

�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

�
�

�

�

�
�

�

�
−++

−+

=

�
�

�

�

�
�

�

�
−++=

0
sin

~
sin11

sin

~
sincos

0
sin

~
sin1sin1

~
sin

0
sin

~
sin11

sin

~
sincossin

0000~

2

2

2

2

2

2

θ
θ

θ
θθ

θ
θθθ

θ
θ

θ
θθθ

failure

successsuccess

failuresuccess

A Λ

() ()()failuresuccessA θθ
~

cos
~

sin0000~ +=Λ

• Define
χ~

1
0
~~~ UAUAQ −−=

• Then 
1000~~ successsuccessAQk ==Λ



1. We don’t a priori know the success 
probability.

2. If we know the probability, we don’t know 
how to efficiently and exactly implement the 
necessary phase shifts or coin flips exactly 
within the computing model.

Two problems:



Possible solution: Massage the algorithm to work 
with a known probability.

1. We don’t a priori know the success probability.

Technique 1: Tweek the algorithm to make it 
easier to analyze the success probability.

Technique 2: Reject some of the successful 
outcomes with an appropriate probability.



• It suffices to be able to compute the success 
probability once we obtain a successful outcome

( ) ( )
( )

( )
( )

( )
( ) ( ) failuresuccess

failure

success

A

θθ

θ

θ
θ

θ
θθθ

~
cos

~
sin

00cos

0
sin

~
sin11

sin

~
sinsin

0000~

2

2

+=

�
�
�
�

�

�

�
�
�
�

�

�

+

�
�

�

�

�
�

�

�
−+

=

Λ

θ is a classical description of θ



( ) ( )( )failuresuccessA θθ
~

cos
~

sin0000~ +=Λ

• Define 
χ~

1
0
~~~ UAUAQ −−=

• Then

1000~~ θsuccesssuccessAQk ==Λ

• Should our computing model allow us to
implement the required rotation or quantum coin
flip? (Adleman, Demarrais and Huang, “Quantum Computability”,
define a notion of EQP relative to various quantum Turing machines.)

• For now, let’s assume that we can deterministically
compute the required one-qubit gate to m bits of
precision in time polynomial in m and the input size.

2. Once we know the probability, we don’t know how
to efficiently and exactly implement the
necessary phase shifts or quantum coin flips
exactly within the computing model.

• Consider a black-box problem with an algorithm
that on input size n makes N queries and uses T
other gates and satisfies the three criteria

Is this attempted derandomization technique
better than standard Chernoff bound methods?

• They succeed with probability at least ¼.

• We can efficiently and deterministically tell when they have
succeeded.

• If the algorithm succeeds, we can compute the success
probability exactly.

• Let’s amplify the success probability to ε−

New technique
3N queries

other gates

Chernoff bound method
queries

other gates

��
�

�
��
�

�
�
�

�
�
�

� NO
ε

ε−

Tnpoly ��
�

�
��
�

�
�
�

�
�
�

�

ε
��
�

�
��
�

�
�
�

�
�
�

� TO
ε

• I claim that we should be allowed to use any
one-qubit gate G for which we specify a
deterministic classical Turing machine TG that
computes the amplitudes of the gate with m
bits of precision in time polynomial in m and
the length of the description of TG.

• In other words, we can assume that we
have an oracle that maps

ψψ GTT GG α

• We need something like this to have a robust
definition of exact quantum computation, i.e.
one that does not depend on a arbitrary
choice of universal gate set.

• We have already effectively seen this, but a
finite number of times when defining a
particular quantum computer (e.g. [BV97])

• Why not allow it any time, as long as we
charge appropriately?

• In the uniform family of circuits model, why
not define a finite set of gates for each
circuit produced?

• The quantum Fourier transform for any
product of cyclic groups.

• Finite Abelian HSPs

• Order-finding and integer factorization

Recall the algorithm for splitting N into two non-trivial
factors (CEMM version of Kitaev approach):

�
−

= −

1

1

N

a
a

N
Pick a random a

1),(

1),(

Naa
N
NN

a
N
N

Na

Na

�

�

>

=

−
+

φ

φ Test if gcd(a,N) > 1

For a fixed where gcd(a,N)=1 a

rk
x

x
r
ki

n

r

k

x

x
n

n

n

xe
r

Nax

/

12

0

21

0

12

0

�
�
�

�
�
�
�

�
= ��

�

−

=

−

=

−

=

π

exponentiate

For a fixed where gcd(a,N)=1 a

After the QFTrk
l

l

r

k

n

l
r /

12

0

1

0
�
�
�

�
�
�
�

�
= ��

−

=

−

=

α

nn
l

r
kl +<≤

2

2

2

2

2

2
1

2

π

π

π

π

π

αα

≥

�
�

�
�
�

�
�
�

�
�
�

� +−

�
�
�

�
�
�
�

�
��
�

�
��
�

�
−−

+
�
�

�
�
�

�
�
�

�
�
�

� −

�
�
�

�
�
�
�

�
��
�

�
��
�

�
−

=

+ +

n
n

n

n
n

n

ll

l
r
k

l
r
k

l
r
k

l
r
k

(We will ultimately only accept these outcomes)

rk
y

r
y

r

k

n

arky
r /

12

0

~1

0
�
�
�

�
�
�
�

�
��

−

=

−

=

α

After continued fractions, and test of denominator:

() rk
y

rr
y

r

k

n

Naarky
r /

12

0

2/~~1

0
Ψ,1gcd~,~1

�
�
�

�
�
�
�

�
−��

−

=

−

=

α

Attempted factorization:

()21/222/111
~,~~Ψ~,~Ψ~,~

21
rrlcmrrkyrky rkrk =

we could efficiently:

1. Redo the eigenvalue measurements exactly and
accept only the two values and satisfying

2. efficiently compute all the relevant probabilities
needed to derandomize.

If we had the full prime factorization of

()() ()() 1,,),(, =NNNN tφφφφ Λ
()Nt 4log≤

nn
l

r
kl

2
1

2
+<≤

l 1+l

Keep splitting into factors until we have a
prime power factorization. Then continue
factoring and so on until we attempt a
total of splittings.

(Once we are down to 1, we can trivially “split” 1
into 1=1x1.)

N

()Nφ
[] 1log2 2 +N

•Ideally, we would like each splitting to work with
probability exactly ½ and we would keep only the
computational paths that succeeded at least

times (which is more than enough
to get the full factorization of)

•Note that this event would occur with probability
exactly ½.

•Along all such successful paths, we doctor the
probabilities to give such a distribution.

•We can now easily derandomize the algorithm.

[] 1log2 +N
Λ),(, NN φ

• Have introduced additional criteria under
which we can quantumly derandomize
algorithms

• With a reasonable computing model, this
allows the derandomization of several
existing BQP quantum algorithms

