University of

[Institute for Waterloo &™=
Quantum m ;.1
Computing @

1Q

On the derandomization of
guantum algorithms

Michele Mosca

Quantum Information Processing 2003

www.Igc.ca

[nstitute for
Quantum
Computing

i *.J.)uantum—cﬁq':tm:npiﬁ

Huh'r‘liﬂ‘ t:c:h‘:mu HIC'IEI[H]"—— '
; L'}U'-rnmnﬂb{p&n
!’-:p I mpunn“}‘t _

H‘!ﬁ._

e

FERIMETER HJHE-‘HU!E FOR THEORETICAL PHYSICS

Perimeter Institute is a community of
theoretical physicists dedicated to
Investigating fundamental issues In

theoretical physics.

www.perimeterinstitute.ca

PERIMETER INSTITUTE FOR THEORETICAL PHYSILCS

What do | mean by
“derandomization™?

In classical probabilistic computing,
“derandomization” is usually taken to mean
the replacement of random coin flips with
something deterministic. The consequence
(and ultimate objective) Is to turn probabilistic
algorithms into deterministic ones.

In the quantum setting, | take
“derandomization” to mean turning
probabilistic algorithms into deterministic or
“exact” algorithms.

What algorithms do | consider?

| consider algorithms satisfying 3 properties:

 They succeed with probabillity at least .

 We can efficiently and deterministically tell
when they have succeeded.

« If the algorithm succeeds, we can compute
the success probability exactly.

What was already known?

In Brassard and Hoyer’s paper (quant-ph/9704027) ON
making Simon’s algorithm exact, they introduce
two essential ingredients:

 They tweek each iteration of algorithm to give a
linearly independent vector orthogonal to hidden
subgroup with probability exactly Y.

e They introduce a generalized version of amplitude
amplification and get it to work exactly in the case
that we know the success probability.

How does the amplitude amplification
work?

« Consider any algorithm A (turned into a
unitary quantum algorit.hmg hat succeeds
with probability p = sin {(9

A‘ 00/ O> = sin(@)‘ Success> + COS(H)‘ failure>
. Define Q = —-AU ,A7'U,

 Then the algorithm Q kA‘OO N O>
succeeds with probability

p =sin *((2k +1)0)

0" A‘ 00A O> = sin((2k + 1)(9)‘ Success> + COS((Zk + 1)(9)‘ failure>

How does that work?

Would lik k = -
. ould like - — T
46’ 2
« But this might not be an integer.
- Pick ~ |z 1
k= —-—
460 2

* Hayer (quant-ph/0006031) and Brassard and Hayer

suggest strategies that apply a modified
quantum search iterate a total of } times.

o Earlier work (BHMT, quant-ph/0005055) suggests
another strategy that also works.

Alternative technique (Hoyen

e Pick

k= —-—

e Pick 5 < @ satisfying sin ((2g T 1)5):

. Prepare the qubit

sm sin
1 1 - O
sin ((9 > \/ sin («9 >

l.e. Define

A|0OA 0)]0)

(Sin(e)‘success>+cos()‘ fallure>{ﬂ(9—) > \/1—8111 (QN)
(©)

sin ()
)

’

\

~~/

+ COS(@)‘ failure>[

sin ((9) SMCCQSS>‘ 1> +sin ((9)\/

SIn 9

sin(@) ‘ 1>

sin (

‘SUCC@SS» >

+\/1

sin

o

v

sin?

(

v

)

Alternative technique

~~/ ~~

A ‘ 00N O>‘ O> = (sin(é’ } Success> + COS(@ } failure>)

* Define Q — —ZUOZ_lU;

e Then
Qk;ﬂ 00A O> = ‘SMCCQSS> = ‘SMCCQSS>‘ 1>

Why is it hard to derandomize some
algorithms?

Two problems:

1. We don’t a priori know the success
probabillity.

2. If we know the probability, we don’t know
how to efficiently and exactly implement the
necessary phase shifts or coin flips exactly
within the computing model.

What can we do about Problem 17

1. We don’t a priori know the success probabillity.

Possible solution: Massage the algorithm to work
with a known probability.

Technique 1: Tweek the algorithm to make it
easier to analyze the success probabillity.

Technigue 2: Reject some of the successful
outcomes with an appropriate probability.

Elaborate on Technique 2

t suffices to be able to compute the success
orobability once we obtain a successful outcome

A|0OA 0)[0)
/ . _\[sinlp sin’(§)
sm(@)‘ SMCC@SS>‘ 0 >[31Jn(§% 1> + \/ 1- . E@g ‘ O>]

t cos(«9)‘ failure>‘ O>‘ O>

=sin ((9 1 Success> + cos(@ } failure>

J

@ is a classical description of 0

~~/ ~~

A ‘ 00N O>‘ O> = (sin(é’ } Success> + COS(@ } failure>)
* Define Q - _ 7 UOZ_lU;

 Then
Qk Z‘ 00 O> = ‘SMCCQSS> = ‘SMCCQSS>‘ 5>‘ 1>

What can we do about problem 27

2. Once we know the probability, we don’t know how
to efficiently and exactly implement the
necessary phase shifts or qguantum coin flips
exactly within the computing model.

e Should our computing model allow us to
Implement the required rotation or quantum coin

flip? (Adleman, Demarrais and Huang, “Quantum Computability”,
define a notion of EQP relative to various quantum Turing machines.)

e For now, let’'s assume that we can deterministically
compute the required one-qubit gate to m bits of
precision in time polynomial in m and the input size.

Is this attempted derandomization technique
better than standard Chernoff bound methods?

e Consider a black-box problem with an algorithm
that on input size n makes N queries and uses T
other gates and satisfies the three criteria

 They succeed with probability at least Ya.

 We can efficiently and deterministically tell when they have
succeeded.

« If the algorithm succeeds, we can compute the success
probability exactly.

« Let's amplify the success probabilityto] —¢

Amplifying to success probability 1 —¢

New technigue Chernoff bound method

3N queries 1 qgueries
€

fufl ool

other gates other gates

Back to problem 2

| claim that we should be allowed to use any
one-qubit gate G for which we specify a
deterministic classical Turing machine T that
computes the amplitudes of the gate with m
bits of precision in time polynomial in m and
the length of the description of T4

In other words, we can assume that we
have an oracle that maps

T5)w) o |T5)Glw)

Why allow such a gate?

 We need something like this to have a robust
definition of exact quantum computation, i.e.
one that does not depend on a arbitrary
choice of universal gate set.

 \We have already effectively seen this, but a
finite number of times when defining a
particular guantum computer (e.g. [BV97])

Why allow such an oracle?

* In the uniform family of circuits model, why
not define a finite set of gates for each
circuit produced?

 Why not allow it any time, as long as we
charge appropriately?

Things we can do exactly and
efficiently in this model

The quantum Fourier transform for any
product of cyclic groups.

Finite Abelian HSPs

Order-finding and integer factorization

Derandomizing Shor's factoring
algorithm in this model

Recall the algorithm for splitting N into two non-trivial
factors (CEI\/IM version of Kitaev approach):

Pick a random a
> ——la

Z \/g\o%\f)‘@m Testif gcd(a,N) > 1
(a,N)=1

JN =p(N)
+ (a%ﬂ Ty a) ged(a, N))

Derandomizing Shor's factoring
algorithm in this model

For a fixed ‘CZ> where gcd(a,N)=1

=1 exponentiate
“mod N
;\E X>CZ >
=11 (22 1 apike)
— — r W
2\ & e

Derandomizing Shor's factoring
algorithm in this model

For a fixed ‘CZ> where gcd(a,N)=1

e

r—

= O%\;a ‘ > “Pk/r> After the QFT

[k [+1
<_<

=
[

20 2"

Can efficiently approximate this

probability
2 2
‘al‘ +‘al+1
[n A 4 n h
sin’ 7{(2 k lj sin’ 7[£2 k [lj
_ L U7 y U7)

|
+
2" sin” n(k /) 2" sin’ n(k / 1)
r 2" r 2"
> iz (We will ultimately only accept these outcomes
T

Can efficiently approximate this
probability

After continued fractions, and test of denominator:
=11 (2n -1 3\

ZT 2.%,]Y) N»N> a?> Y,)

k=0 NI\ _y=0 y

Attempted factorization:

5 Sl

P acdla” —1,N)>j“1’k/,,>

Can amplify success to a constant by doing
two independent eigenvalue estimations

=1 ’ﬁarz)>

7))

b5 | 7

‘y1 J/2

How can we compute the probability of
success of this mess??

If we had the full prime factorization of

N,o(N),0(p(N)A o (N)=1

we could efficiently:

t£10g4(N)

1. Redo the eigenvalue measurements exactly and

accept only the two values |/)and |/ +1) satisfying
[k [+1
<—<
2" 2"
2. efficiently compute all the relevant probabillities
needed to derandomize.

Overall strategy

Keep splitting V into factors until we have a
prime power factorization. Then continue
factoring ¢ (N) and so on until we attempt a

total of 2{10g2 NJ+1 splittings.

(Once we are down to 1, we can trivially “split” 1
iInto 1=1x1.)

Ideally

|ldeally, we would like each splitting to work with
probability exactly ¥2 and we would keep only the
computational paths that succeeded at least
{10g2 NJ+1 times (which is more than enough
to get thé full factorization of N, (N),N\)

*Note that this event would occur with probability
exactly va.

*Along all such successful paths, we doctor the
probabilities to give such a distribution.

*\We can now easily derandomize the algorithm.

Summary

« Have introduced additional criteria under
which we can quantumly derandomize
algorithms

 With a reasonable computing model, this
allows the derandomization of several
existing BQP quantum algorithms

