Capturing quantum complexity classes via quantum channels

John WatrousDepartment of Computer Science University of Calgary

Quantum channels

In this talk, a quantum channel is just a trace-preserving, completely positive mapping from *n* qubits to *k* qubits.

Described by (unitary) quantum circuits:

General type of problem

We'll be interested in the following general type of computational problem:

- **Input**: classical description of one or more quantum channels
- **Promise**: some guarantee on the properties of the channel or channels.
- **Output**: "yes" or "no"

Example problem $#1:$ can the output be close to totally mixed?

Input: a quantum channel *T.*

Promise: one of the following holds:

(1) there exists an input ρ such that:

$$
F(\sigma,\tau) = \text{Tr}\sqrt{\sqrt{\sigma}\,\tau\sqrt{\sigma}} \longrightarrow F\Big(T(\rho), 2^{-k}I\Big) > 1 - \varepsilon
$$
\n
$$
\text{(2) for every input } \rho:
$$
\n
$$
F\Big(T(\rho), 2^{-k}I\Big) < \varepsilon
$$

Output: "yes" if (1) holds, "no" if (2) holds.

Example problem $#1:$ can the output be close to totally mixed?

Shorthand for same problem:

Input: a quantum channel *T.*

 $(T(\rho),2^{-k}I))$) $F(T(\rho), 2^{-\kappa}I) > 1-\varepsilon$ *k* there exists an input ρ such that: **Yes:**

No: for every input ρ : $F\left(T(\rho), 2^{-k}I\right) < \varepsilon$) *k*

Example problem $#2$: outputs close together?

- **Input**: two quantum channels T_{1} and T_{2} .
- **Yes:**: there exist states ρ and ξ such that:

$$
F(T_1(\rho), T_2(\xi)) > 1 - \varepsilon
$$

No:for all states ρ and ξ :

$$
F\big(\,T_1(\rho),T_2(\xi)\,\big)<\varepsilon
$$

Special case: *n*=0

It makes sense to consider "channels" withno input:

We won't refer to these as channels...

Convention: when we want to describe **states**, we will describe them in this way.

Example problem #3: output close to a given state?

- **Input**: a quantum channel T and a state ξ .
- **Yes:**: there exist a state ρ such that:

$$
F(T(\rho), \xi) > 1 - \varepsilon
$$

No:for all states ρ :

$$
F(T(\rho),\xi) < \varepsilon
$$

Example problem $#4$: states close together?

Input: aquantum states ρ and ξ .

Yes: ρ and ξ are close together:

$$
F\left(\rho,\xi\right) > 1-\varepsilon
$$

No: ρ and ξ are far apart:

$$
F(\rho,\xi) < \varepsilon
$$

Example problem #5: entanglement breaking channel?

- **Input**: a quantum channel *T*.
- **Yes:***T* is close to entanglement breaking: for all ρ there exists separable ζ s.t.

$$
F((T \otimes I)(\rho), \xi') > 1 - \varepsilon
$$

No: T is far from entanglement breaking: there exists ρ s.t. for all separable ξ : $F((T \otimes I)(\rho), \xi) < \varepsilon$

Complete problems

Let *A* denote some promise problem. Write

$$
A_{\rm yes} \ , \ A_{\rm no}
$$

to denote sets of "yes" instances and "no" instances, respectively.

Promise problem *A* is complete for class *C* if:

1.*A*∈*C*

2. for all promise problems *B* in *C* there exists a polynomial-time computable *f* such that

$$
x \in B_{\text{yes}} \implies f(x) \in A_{\text{yes}}, \qquad x \in B_{\text{no}} \implies f(x) \in A_{\text{no}}
$$

Simple example

Consider the following problem *A*:

- **Yes:** $1|\rho|1\rangle \geq 2/3$ **Input**: a quantum state ρ on <u>one quitter</u> **No**: $\langle 1|\rho|$ $\rho|1\rangle \leq 1/3$ $n \ge 2/3$
 $n \le 1/2$ **interesting…**
 $n \ge 1/2$ **interesting**
- 1. Easily \leq \leq BQP (by simulating the circuit $t \times M^2$ dbes ρ). **This is**
- 2. Any promise problem B in BQP reduces to A (by virtue of the fact that there exists an efficient quantum algorithm for *B*).

Quantum Interactive Proof Systems

Problems with quantum interactive proofs

A promise problem *A* has a quantum interactive proof system if there exists a verifier *V* such that:

1. (completeness condition)

If $x \in A_{\text{yes}}$ then there exists some prover P that convinces *V* to accept (with high probability).

2. (soundness condition)

If $x \in A_{\text{no}}$ then no prover P can convince V to accept (except with small probability).

Example problem $#2$: outputs close together?

- **Input**: two quantum channels T_{1} and T_{2} .
- **Yes:**: there exist states ρ and ξ such that:

$$
F(T_1(\rho), T_2(\xi)) > 1 - \varepsilon
$$

No: $F(T_1(\rho), T_2(\xi)) < \varepsilon$ for all states ρ and ξ :

Complete for *QIP.*

Example problem $#3$: output close to a given state?

- **Input**: a quantum channel T and a state ξ .
- **Yes:**: there exist a state ρ such that:

$$
F(T(\rho), \xi) > 1 - \varepsilon
$$

No:for all states ρ :

 $F(T(\rho), \xi) < \varepsilon$

Complete for * *QIP(2).*

Example problem $#4$: states close together?

Input: aquantum states ρ and ξ .

Yes: ρ and ξ are close together:

$$
F(\rho,\xi) > 1-\varepsilon
$$

No: ρ and ξ are far apart:

 $F(\rho,\xi) < \varepsilon$

Complete for $\mathbf{OSZK}_{\text{HV}}$ **.**

Back to example problem $#2$: outputs close together?

Input: two quantum channels T_{1} and T_{2} .

Yes:: there exist states ρ and ξ such that:

$$
F(T_1(\rho), T_2(\xi)) > 1 - \varepsilon
$$

No: $F(T_1(\rho), T_2(\xi)) < \varepsilon$ for all states ρ and ξ :

Complete for *QIP.*

3-Message Quantum **Interactive Proofs**

We know that *QIP = QIP(3)*, so we just need to show that any problem *B* with a 3-message quantum interactive proof reduces to our problem.

3-Message Quantum **Interactive Proofs**

We know that *QIP = QIP(3)*, so we just need to show that any problem *B* with a 3-message quantum interactive proof reduces to our problem.

message 1 message 2 message 3

Removing prover from the picture

Transformations

Define quantum transformations $T^{}_1,\ T^{}_2$ as follows:

$$
T_1(\rho) = \mathrm{Tr}_{\mathcal{M}} V_1 \left(|\begin{array}{cc} 0 \Lambda & 0 \end{array} \rangle \langle 0 \Lambda & 0 | \otimes \rho \right) V_1^{\dagger}
$$

$$
T_2(\xi) = \mathrm{Tr}_{\mathcal{M}} V_2^{\dagger} \left(|1\rangle \langle 1| \otimes \xi \right) V_2
$$

Maximum Acceptance Probability

The maximum probability with which the prover can convince the verifier to accept is:

$$
\max_{\rho,\xi} F(T_1(\rho),T_2(\xi))^2
$$

where the maximum is over all inputs ρ and ξ .

Bipartite Quantum States

 $|\psi \rangle, |\varphi \rangle$ E $\mathcal{H}_1 \otimes \mathcal{H}_2$ Suppose $\ket{\psi}$ and $\ket{\varphi}$ are bipartite quantum states

that satisfy

$$
\mathrm{Tr}_{\mathcal{H}_2}|\psi\rangle\langle\psi| = \mathrm{Tr}_{\mathcal{H}_2}|\varphi\rangle\langle\varphi|
$$

Then there exists a unitary operator U acting only on ${\cal H}_2$ such that

$$
(I \otimes U)|\psi\rangle = |\varphi\rangle
$$

(Approximate version also holds.)

Options for the Prover

Prover can transform $\ket{\psi}$ to $\ket{\varphi}$ for any $\ket{\varphi}$ that leaves the verifier's qubits in state ρ .

Maximum Acceptance Probability

Maximum Acceptance Probability

The maximum probability with which the prover can convince the verifier to accept is:

$$
\max_{\rho,\xi} F(T_1(\rho),T_2(\xi))^2
$$

where the maximum is over all inputs ρ and ξ .

Applications Applications

The completeness of these problems allows us to prove various things about the corresponding classes, such as:

- $QIP ⊆ EXP:$ the complete problem can be solved in *EXP* via semidefinite programming.
- *QSZK* closed under complement and parallelizable to 2 messages: there exists a 2-message *QSZK*-protocol for the corresponding complete problem and its complement
- $QSZK ⊆ PSPACE:$ the complete problem can be solved in *PSPACE.*

Applications Applications

• $QIP ⊆ QMAM$: any problem having a quantum interactive proof system also has a 3-message **quantum Arthur-Merlin game**.

A quantum Arthur-Merlin game is a restricted type of quantum interactive proof:

- the verifier's (Arthur's) messages consist only of fair coin-flips (classical).
- all of Arthur's computation takes place after all messages have been sent.

Quantum Arthur-Merlin protocol

Quantum Arthur-Merlin protocol

Message 1 (from Merlin to Arthur):

Merlin sends some register **R** (supposedly corresponding to the common output of the channels).

Message 2 (from Arthur to Merlin):

Arthur flips a coin: call the result *b*. Send *b* to Merlin.

Message 3 (from Merlin to Arthur):

Merlin sends some register **S** (corresponds to traced-out qubits).

Quantum Arthur-Merlin protocol

Arthur's verification procedure (after messages are sent):

If the coin-flip was $b=0$: Apply \mathcal{Q}_2^{-1} to (R,S) . Accept if all ancilla qubits are set to 0, reject otherwise. Q_{2}^{2}

If the coin-flip was $b=1$: Apply $\boldsymbol{\mathcal{Q}}_{{\rm{l}}}^{{\rm{-1}}}$ to (\textbf{R},\textbf{S}) . Accept if all ancilla qubits are set to 0, reject otherwise. Q_1^-

Step 2 (if *b*=0) Send the rest of $\ket{\varphi_{\scriptscriptstyle 2}}$ to Arthur.

rest of to Arthur.

QMAM protocol: soundness QMAM protocol: soundness

Suppose Merlin is cheating…

Let the reduced state of register **R** (sent on the first message from Merlin to Arthur) be σ .

Claim: maximum acceptance probability is

$$
\max_{\rho,\xi} \left\{ \frac{1}{2} F(T_1(\rho), \sigma)^2 + \frac{1}{2} F(\sigma, T_2(\xi))^2 \right\}
$$

$$
\leq \frac{1}{2} + \frac{1}{2} \max_{\rho,\xi} F(T_1(\rho), T_2(\xi))
$$

Open questions

- Find other complete problems for quantum classes.
- Develop relations among complexity of various problems about channels (e.g., problems concerning entanglement, channel capacity,…).
- There are still many interesting questions about quantum interactive proof systems that are unanswered. (E.g., just about everything about *QIP*(2).)