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Quantum channels

In this talk, a qguantum channel is just a
trace-preserving, completely positive mapping

from N qubits to K qubits.

Described by (unitary) quantum circuits:
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General type of problem

We’ll be interested in the following general
type of computational problem:

INnput: classical description of one or more
quantum channels

Promise: some guarantee on the properties
of the channel or channels.

Output: “yes” or “no”



Example problem #1: can the
output be close to totally mixed?

Input: a quantum channel T.

Promise: one of the following holds:

(1) there exists an input p such that:

F(o,1) = Tr\/\/gr\/g—’F(T(p),Z'kl )>1—£

wevery Input pO:
F(T(p), 2%1 )<e

Output: “yes” If (1) holds, “no” if (2) holds.



Example problem #1: can the
output be close to totally mixed?

Shorthand for same problem:

Input: a quantum channel T.

Yes: there exists an input p such that:

F(T(p), 271 )>1-¢

NoO: for every input 0

F(T(p),27%1 )<e



Example problem #:2:
outputs close together?

Input: two quantum channels T, and T, .

Yes: there exist states p and ¢ such that:

F(T.(0), T,(¢))>1-¢

No: for all states p and ¢:

F(T(p) T,(é) )<e



Special case: N=0

It makes sense to consider “channels” with
no input:
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We won’t refer to these as channels...
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Convention: when we want to describe states,
we will describe them in this way.



Example problem #3:
output close to a given state?

Input: a quantum channel T and a state ¢.

Yes: there exist a state p such that:

F(T(p),&)>1-¢

NoO: for all states p:

F(T(p),& )<e



Example problem #4.:
states close together?

Input: quantum states p and ¢.

Yes: p and ¢ are close together:
F(p,&)>1-¢
No: p and ¢ are far apart:

F(p,&)<e



Example problem #b5:
entanglement breaking channel?

Input: a quantum channel T.

Yes: T is close to entanglement breaking:
for all p there exists separable ¢ s.t.

F(TOI)(p),&)>1-¢

NoO: T is far from entanglement breaking:
there exists p s.t. for all separable ¢:

F(TOI)(p), & )<e



Complete problems

Let A denote some promise problem. Write

Aess o

to denote sets of “yes” instances and “no”
Instances, respectively.

Promise problem A is complete for class Cif:
1. ALC

2. for all promise problems B in C there exists a
polynomial-time computable f such that

XOB= f(0A,  xOB,= f(OA,



Simple example

Consider the following problem A:

INnput:

2. Any promise problem B in BOP reduces to A
(by virtue of the fact that there exists an

efficient quantum algorithm for B).



Quantum Interactive Proof Systems
X X

i i

quantum
channel

accept If the verifier believes X

Output: IS a “yes” input

reject otherwise



Problems with quantum
Interactive proofs

A promise problem A has a quantum interactive
proof system if there exists a verifier V such that:

1. (completeness condition)

If X A then there exists some prover P that
convinces V to accept (with high probability).

2. (soundness condition)

If XLJA, then no prover P can convince V to
accept (except with small probability).



Example problem #2:
outputs close together?

Input: two quantum channels T, and T, .

Yes: there exist states p and ¢ such that:

F(Tl(p),Tz(f) ) >1-¢

No: for all states p and ¢:

F(T(p) T,(é) )< e

Complete for QIP.



Example problem #3:
output close to a given state?

Input: a quantum channel T and a state ¢.

Yes: there exist a state p such that:

F(T(p),&)>1-¢

NoO: for all states p:

F(T(p),& )<e

Complete™ for QIP(2).



Example problem #4.:
states close together?

Input: guantum states p and ¢.

Yes: o and ¢ are close together:
F(p,&)>1-¢
No: p and ¢ are far apart:
F(p.¢)<e

Complete for QSZK,,, .



Back to example problem #2:
outputs close together?

Input: two quantum channels T, and T, .

Yes: there exist states p and ¢ such that:

F(Tl(p),Tz(f) ) >1-¢

No: for all states p and ¢:

F(T(p) T,(é) )< e

Complete for QIP.



3-Message Quantum
Interactive Proofs

We know that QIP = QIP(3), so we just need to

show that any problem B with a 3-message
quantum interactive proof reduces to our problem.
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3-Message Quantum
Interactive Proofs

We know that QIP = QIP(3), so we just need to

show that any problem B with a 3-message
quantum interactive proof reduces to our problem.
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Removing prover from the picture

B output
verifier’s = qugn
qubits =
message -
qubits =
prover’'s —

qubits




Transformations

i [[ 111
T
]

Define quantum transformations Tl, T2 as follows:
T.(0)=Tr, V. (|OA 0){0A 0|0 p )V,
T,(&)=Tr, V) (D0 &)V,




Maximum Acceptance Probability

The maximum probability with which the prover
can convince the verifier to accept is:

max F(T,(0) T,(¢))°

where the maximum is over all inputs p and ¢.



Bipartite Quantum States

Suppose |¢) and |#) are bipartite quantum states

), |¢)0H, O H,

that satisfy

T, W) w| = L% P)9|

Then there exists a unitary operator U acting only
on H, such that

(18U)|w) = |¢)

(Approximate version also holds.)



Options for the Prover
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Prover can transform ‘¢’> to ‘¢> for any ‘¢> that leaves
the verifier’'s qubits in state 0.



Maximum Acceptance Probability
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Maximum Acceptance Probability
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Maximum Acceptance Probability
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Maximum Acceptance Probability
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Maximum Acceptance Probability
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Maximum Acceptance Probability

The maximum probability with which the prover
can convince the verifier to accept is:

max F(T,(0) T,(¢))°

where the maximum is over all inputs p and ¢.



Applications

The completeness of these problems allows us
to prove various things about the corresponding
classes, such as:

« QIP [ EXP: the complete problem can be
solved in EXP via semidefinite programming.

e QS/K closed under complement and
parallelizable to 2 messages: there exists
a 2-message QSZK-protocol for the

corresponding complete problem and its
complement

- Q/K [ PSPACE: the complete problem can
be solved in PSPACE.



Applications

- QIP L1 QMAM: any problem having a
quantum interactive proof system also has a
3-message quantum Arthur-Merlin game.

A quantum Arthur-Merlin game iIs a restricted
type of quantum interactive proof:

e the verifier’'s (Arthur’s) messages consist
only of fair coin-flips (classical).

e all of Arthur’s computation takes place after
all messages have been sent.




Quantum Arthur-Merlin protocol
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Quantum Arthur-Merlin protocol

Message 1 (from Merlin to Arthur):

Merlin sends some register R
(supposedly corresponding to the
common output of the channels).

Message 2 (from Arthur to Merlin):

Arthur flips a coin: call the result b.
Send b to Merlin.

Message 3 (from Merlin to Arthur):

Merlin sends some register S
(corresponds to traced-out qubits).



Quantum Arthur-Merlin protocol

Arthur’s verification procedure (after
messages are sent):

If the coin-flip was b = O:

Apply Q' to (R,S).
Accept if all ancilla qubits are set to O,
reject otherwise.

If the coin-flip was b= 1:

Apply Q* to (R,S).
Accept if all ancilla qubits are set to O,
reject otherwise.




“Honest” Merlin strategy

> traced-out

J\

3

- traced-out

J\

- <

[00A 0)




“Honest” Merlin strategy
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“Honest” Merlin strategy




“Honest” Merlin strategy
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“Honest” Merlin strategy

Step 2 (if b=0)
Send the rest of ‘¢2>to Arthur.

Step 1:
- , Prepare |¢2> send
appropriate part to
‘ > Arthur.
l// < I I
T = o — (%)
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“Honest” Merlin strategy
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Step 1:
Prepare ‘¢2> send
appropriate part to
Step 2 (if b=1) Arthur.
Apply U " to the rest of ‘¢2>
rest of to Arthur.
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QMAM protocol: soundness

Suppose Merlin is cheating...

Let the reduced state of register R (sent on
the first message from Merlin to Arthur) be C.

Claim: maximum acceptance probability is
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Open questions

e Find other complete problems for guantum
classes.

e Develop relations among complexity of various
problems about channels (e.g., problems
concerning entanglement, channel capacity,...).

e There are still many interesting guestions about
quantum interactive proof systems that are
unanswered. (E.g., just about everything

about QIP(2).)



