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Quantum channelsQuantum channels

In this talk, a quantum channel is just a
trace-preserving, completely positive mapping
from n qubits to k qubits.

Described by (unitary) quantum circuits:
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General type of problemGeneral type of problem

We’ll be interested in the following general
type of computational problem:

Input:    classical description of one or more
quantum channels

Promise:  some guarantee on the properties
of the channel or channels.

Output: “yes” or “no”



Example problem #1: can theExample problem #1: can the
output be close to totally mixed?output be close to totally mixed?

Input: a quantum channel T.

( ) ερ −>− 1 2 ),( ITF k

(1) there exists an input ρ such that:

Output: “yes” if (1) holds, “no” if (2) holds.

Promise: one of the following holds:

(2) for every input ρ:

( ) ερ <−  2 ),( ITF k
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Example problem #1: can theExample problem #1: can the
output be close to totally mixed?output be close to totally mixed?

Input:    a quantum channel T.

( ) ερ −>− 1 2 ),( ITF k

there exists an input ρ such that:

No:

Yes:

for every input ρ:

( ) ερ <−  2 ),( ITF k

Shorthand for same problem:



Example problem #2: Example problem #2: 
outputs close together?outputs close together?

( )( ) εξρ −>1  ),( 21 TTF

there exist states ρ and ξ such that:Yes:

Input:    two quantum channels     and     .1T 2T

No:

( )( ) εξρ <  ),( 21 TTF

for all states ρ and ξ:



Special case: Special case: n=n=00
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It makes sense to consider “channels” with
no input:

We won’t refer to these as channels… 

Convention: when we want to describe states,
we will describe them in this way.



Example problem #3: Example problem #3: 
output close to a given state?output close to a given state?

( ) εξρ −>1  ),( TF

there exist a state ρ such that:Yes:

Input:    a quantum channel T and a state ξ.

No:

( ) εξρ <  ),( TF

for all states ρ:



Example problem #4: Example problem #4: 
states close together?states close together?

( ) εξρ −>1  , F

ρ and ξ are close together:Yes:

Input:    quantum states ρ and ξ.

No:

( ) εξρ <  , F

ρ and ξ are far apart:



Example problem #5: Example problem #5: 
entanglement breaking channel?entanglement breaking channel?
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Yes: T is close to entanglement breaking:
for all ρ there exists separable ξ s.t.

Input: a quantum channel T.

No: T is far from entanglement breaking:
there exists ρ s.t. for all separable ξ:

( ) εξρ <⊗   ),)(( ITF



Complete problemsComplete problems
Let A denote some promise problem.  Write

to denote sets of “yes” instances and “no”
instances, respectively.

noyes   , AA

Promise problem A is complete for class C if:

,)(  yesyes AxfBx ∈�∈ nono )(  AxfBx ∈�∈

2. for all promise problems B in C there exists a
polynomial-time computable f such that

1. CA ∈



Simple exampleSimple example

Consider the following problem A:

3/2    11 ≥ρYes:

Input:    a quantum state ρ on one qubit.

No: 3/1    11 ≤ρ

1. Easily solved in BQP (by simulating the circuit
that describes ρ).

2. Any promise problem B in BQP reduces to A
(by virtue of the fact that there exists an
efficient quantum algorithm for B).

This is not v
ery in

terestin
g…



Quantum Interactive Proof SystemsQuantum Interactive Proof Systems
x x

Verifier

quantum
polynomial

time

Prover

quantum,
no

computational
restriction

quantum
channel

Output:

accept if the verifier believes x
is a “yes” input

reject otherwise



Problems with quantumProblems with quantum
interactive proofsinteractive proofs

A promise problem A has a quantum interactive
proof system if there exists a verifier V such that:

yesAx ∈

1. (completeness condition)

If            then there exists some prover P that
convinces V to accept (with high probability).

noAx ∈

2. (soundness condition)

If            then no prover P can convince V to
accept (except with small probability).



Example problem #2: Example problem #2: 
outputs close together?outputs close together?

( )( ) εξρ −>1  ),( 21 TTF

there exist states ρ and ξ such that:Yes:

Input:    two quantum channels     and     .1T 2T

No:

( )( ) εξρ <  ),( 21 TTF

for all states ρ and ξ:

Complete for QIP.



Example problem #3: Example problem #3: 
output close to a given state?output close to a given state?

( ) εξρ −>1  ),( TF

there exist a state ρ such that:Yes:

Input:    a quantum channel T and a state ξ.

No:

( ) εξρ <  ),( TF

for all states ρ:

Complete  for QIP(2).*



Example problem #4: Example problem #4: 
states close together?states close together?

( ) εξρ −>1  , F

ρ and ξ are close together:Yes:

Input:    quantum states ρ and ξ.

No:

( ) εξρ <  , F

ρ and ξ are far apart:

Complete for QSZK    .HV



Back to example problem #2: Back to example problem #2: 
outputs close together?outputs close together?

( )( ) εξρ −>1  ),( 21 TTF

there exist states ρ and ξ such that:Yes:

Input:    two quantum channels     and     .1T 2T

No:

( )( ) εξρ <  ),( 21 TTF

for all states ρ and ξ:

Complete for QIP.



33--Message QuantumMessage Quantum
Interactive ProofsInteractive Proofs

2P

2V

1P

1V

verifier’s
qubits

message
qubits

prover’s
qubits

output
qubit

message 1 message 3message 2

We know that QIP = QIP(3), so we just need to

show that any problem B with a 3-message
quantum interactive proof reduces to our problem.



33--Message QuantumMessage Quantum
Interactive ProofsInteractive Proofs

2P

2V

1P

1V

message 1 message 3message 2

We know that QIP = QIP(3), so we just need to

show that any problem B with a 3-message
quantum interactive proof reduces to our problem.

V

M

P



Removing prover from the pictureRemoving prover from the picture
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TransformationsTransformations
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 21, TTDefine quantum transformations          as follows:

2T

000Λ
1



Maximum Acceptance ProbabilityMaximum Acceptance Probability

( ) ( )( ) 2 
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The maximum probability with which the prover
can convince the verifier to accept is:

where the maximum is over all inputs ρ and ξ. 



Bipartite Quantum StatesBipartite Quantum States

21 , HΗ ⊗⊗⊗⊗∈∈∈∈ϕψ

Suppose      and      are bipartite quantum statesψ ϕ

that satisfy

ϕϕψψ
22 HH Tr    rT =

Then there exists a unitary operator    acting only
on      such that

ϕψ     )( ====⊗⊗⊗⊗ UI

U
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(Approximate version also holds.)



Options for the ProverOptions for the Prover
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ϕ

ρ

Prover can transform       to       for any       that leaves
the verifier’s qubits in state    .

ψ ϕ ϕ
ρ
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Maximum Acceptance ProbabilityMaximum Acceptance Probability
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Maximum Acceptance ProbabilityMaximum Acceptance Probability
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Maximum Acceptance ProbabilityMaximum Acceptance Probability
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Maximum Acceptance ProbabilityMaximum Acceptance Probability
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Maximum Acceptance ProbabilityMaximum Acceptance Probability
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Maximum Acceptance ProbabilityMaximum Acceptance Probability
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The maximum probability with which the prover
can convince the verifier to accept is:

where the maximum is over all inputs ρ and ξ. 



ApplicationsApplications

The completeness of these problems allows us
to prove various things about the corresponding
classes, such as:

• :  the complete problem can be
solved in EXP via semidefinite programming. 

EXPQIP ⊆

• QSZK closed under complement and
parallelizable to 2 messages: there exists
a 2-message QSZK-protocol for the
corresponding complete problem and its 
complement

• :  the complete problem can
be solved in PSPACE.

PSPACEQSZK ⊆



ApplicationsApplications

• :  any problem having a
quantum interactive proof system also has a
3-message quantum Arthur-Merlin game.

QMAMQIP ⊆

A quantum Arthur-Merlin game is a restricted
type of quantum interactive proof:

• the verifier’s (Arthur’s) messages consist
only of fair coin-flips (classical).

• all of Arthur’s computation takes place after
all messages have been sent. 



Quantum ArthurQuantum Arthur--Merlin protocolMerlin protocol
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Quantum ArthurQuantum Arthur--Merlin protocolMerlin protocol

Message 1 (from Merlin to Arthur):

Merlin sends some register R 
(supposedly corresponding to the
common output of the channels ).

Message 2 (from Arthur to Merlin):

Arthur flips a coin: call the result b.
Send b to Merlin.

Message 3 (from Merlin to Arthur):

Merlin sends some register S  
(corresponds to traced-out qubits ).



Quantum ArthurQuantum Arthur--Merlin protocolMerlin protocol

If the coin-flip was b = 0: 
Apply      to (R,S).
Accept if all ancilla qubits are set to 0,
reject otherwise.

If the coin-flip was b = 1: 
Apply      to (R,S).
Accept if all ancilla qubits are set to 0,
reject otherwise.

1
1
-Q

1
2
-Q

Arthur’s verification procedure (after 
messages are sent):



“Honest” Merlin strategy“Honest” Merlin strategy
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“Honest” Merlin strategy“Honest” Merlin strategy
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“Honest” Merlin strategy“Honest” Merlin strategy

ξ000Λ

Q1

ξ000Λ

Q2

2ψ

1ψ
1ϕ

2ϕ



“Honest” Merlin strategy“Honest” Merlin strategy
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Step 1:
Prepare      , send
appropriate part to
Arthur.
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“Honest” Merlin strategy“Honest” Merlin strategy

2ψ

ξ000Λ

Q2
2ϕ

Step 1:
Prepare      , send
appropriate part to
Arthur.

2ϕ

Step 2 (if b=0)
Send the rest of       to Arthur.2ϕ



“Honest” Merlin strategy“Honest” Merlin strategy

1ψ

ξ000Λ

Q1

Step 1:
Prepare      , send
appropriate part to
Arthur.

2ϕ

2ϕ
U

Step 2 (if b=1)
Apply       to the rest of      ,
rest of  to Arthur.

2ϕ1−U



QMAM protocol: soundnessQMAM protocol: soundness

Claim: maximum acceptance probability is
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Suppose Merlin is cheating…

Let the reduced state of register R (sent on
the first message from Merlin to Arthur) be σ.



Open questionsOpen questions

• Find other complete problems for quantum
classes. 

• Develop relations among complexity of various
problems about channels (e.g., problems
concerning entanglement, channel capacity,…).

• There are still many interesting questions about
quantum interactive proof systems that are
unanswered.  (E.g., just about everything
about QIP(2).)


