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Eavesdropping on quantum information can 
be detected; key distribution via quantum 

states is unconditionally secure. 

Bennett        Brassard  ’84



Privacy is founded on principles of 
fundamental physics, not the assumption 

that eavesdropping requires a difficult 
computation. Gathering information about a 
quantum state unavoidably disturbs the state.
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Security of quantum key distribution

The “unconditional security” (security against arbitrary 
eavesdropping attacks) of the BB84 quantum key distribution 
scheme has been known since [Mayers ’96], and is now 
widely understood. Perhaps the great challenges at the 
frontier of the theory of quantum cryptography now lie 
elsewhere. Why should security issues in QKD continue to 
attract attention?

Security proofs are premised on assumptions about the 
performance of the equipment used in the protocol. For both 
conceptual and practical reasons, it is useful to clarify and 
weaken these assumptions.



Security of quantum key distribution

• The security of QKD provides a fascinating setting for 
exploring quantitatively the tradeoff between information gain 
and disturbance of a quantum state, a fundamental feature of 
quantum information.

• Unlike other proposed quantum technologies, QKD is 
practical today!

• It is desirable to narrow the gap between the concept of 
quantum key distribution (simple and beautiful) and the 
security proofs (somewhat technical). Techniques developed 
for this purpose may be applicable in other contexts.



QKD for sale!

“Plug and play” quantum 
key distribution is 
commercially available:



Security of quantum key distribution

• Mayers ’96: Perfect source and arbitrary uncharacterized detector. 
(Detector flaws do not effect rate of generation of final key from sifted key.)

• Shor-Preskill ’00: Applies if flaws in source and detector can be absorbed 
into Eve’s (basis-independent) attack.

• Inamori-Lütkenhaus-Mayers ’01: (Phase randomized) weak coherent 
states and uncharacterized detector.

• Koashi-Preskill ’02: Perfect detector and uncharacterized source (emitted 
states, averaged over key bit, are independent of the basis used).

• Gottesman-Lo-Lütkenhaus-Preskill ’02: Generic small flaws in source and 
detector, controlled by adversary. (Key generation rate is reduced by the 
flaws.)

• Ben-Or: QIP ’03.



Security of quantum key distribution

We will concentrate here on the proof of security for an 
uncharacterized source, which uses a new method (largely, it 
is a melding of ideas from Mayers ’96 and Shor-Preskill ’00).

Using the same (easy!) method, we can prove security in the 
case of an uncharacterized detector, recovering a somewhat 
strengthened version of the result of Mayers ’96 (a more 
general source and a higher rate of key generation).



Cryptography
In a cryptographic protocol, two or more parties perform a task 
while protecting privileged information from unauthorized 
parties. For example, Alice might wish to send a secret to Bob, 
without allowing the eavesdropper Eve to learn the secret.

Typical classical cryptographic protocols are computationally 
secure. This means that the security is founded on an 
(unproven) assumption that a certain computation that would 
break the protocol is too hard for the adversary to execute.

If the adversary might have a quantum computer, 
the usual assumptions about classical cryptography 
need to be reexamined.

Alice Bob



One-time pad
Stronger than computational security is information-theoretic 
security. This means that even an adversary with unlimited 
computational power is unable to break the protocol. 

A classical protocol for secret communication that is information-
theoretically secure is the one-time pad. If Alice and Bob share a 
string of random bits (the “key”), then that key can be used to 
encipher and decipher a message. If Eve knows nothing about 
the key then she will not learn anything about the message by 
intercepting the ciphertext.

The key should be used only once (if it is used repeatedly 
information-theoretic security will be compromised), and then 
should be destroyed to ensure that Eve will not acquire a copy.



Alice

Message: HI BOB

01110100 10111001 00000101 10101001 01011100 01110100
01001000 01001001 00100000 01000010 01001111 01000010

00111100 11110001 00100101 11101011 00010011 00110110

Eve

Bob



Alice

01110100 10111001 00000101 10101001 01011100 0111010001110100 10111001 00000101 10101001 01011100 01110100
01001000 01001001 00100000 01000010 01001111 01000010
Message: HI BOB

Eve

Bob

00111100 11110001 00100101 11101011 00010011 00110110
01110100 10111001 00000101 10101001 01011100 01110100

01001000 01001001 00100000 01000010 01001111 01000010

HI BOB



Alice

HI BOB

01110100 10111001 00000101 10101001 01011100 01110100

01110100 10111001 00000101 10101001 01011100 0111010001110100 10111001 00000101 10101001 01011100 01110100

Message: HI BOB

Alice and Bob can
communicate privately
if they share a random
key that Eve doesn’t
know.Eve

Bob



Alice Bob

Quantum key distribution 
and the one-time pad

But what if Alice and Bob possess no shared secret random 
key? Perhaps they are far apart, and have never met. Or 
perhaps they have already consumed the key they previously 
shared, and do not dare to reuse it. They could ask their friend
Charlie to act as an intermediary, distributing the key to Alice
and Bob, but can Charlie be trusted? Perhaps Charlie is 
covertly in cahoots with Eve.

They can solve the problem of distributing a secure (classical) 
key by using quantum information. Furthermore, quantum key 
distribution (unlike quantum computation) is feasible with 
today’s technology. 



BB84 quantum key distribution
Alice prepares one 
of four states:

Bob measures 
either X or Z.
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1) Alice sends a one-qubit signal, choosing a random basis  
(X or Z), and a random eigenvalue (+1 or -1).
2) Bob measures in a randomly chosen basis (X or Z).
3) Through public discussion, Alice and Bob discard the 
results in the cases where they used different bases, retaining 
the rest.

Thus, Alice and Bob generate a shared random string.



BobAlice

Alice can use quantum information 
(qubits) to send a random key to Bob. Eve



BobAlice

Eve

Alice can use quantum information 
(qubits) to send a random key to Bob.



BobAlice

Eve

Alice can use quantum information 
(qubits) to send a random key to Bob.



“Spooky 
action at 

a dis-
tance”

Lorem ipsum dolor sit amet, consectetuer adipiscing 
elit, sed diem 
nonummy nibh 
euismod tin-
cidunt ut lacreet 
dolore magna 
aliguam erat vo-
lutpat. Ut wisis 

enim ad minim veniam, quis nostrud exerci tution 
ullamcorper suscipit lobortis nisl ut aliquip ex ea 
commodo consequat. Duis te feugifacilisi. Duis 
autem dolor in hendrerit in vulputate velit esse 
molestie consequat, vel illum dolore eu feugiat 
nulla facilisis at vero eros et accumsan et iusto 
odio dignissim qui blandit praesent luptatum zzril 
delenit au gue duis dolore te feugat nulla facilisi. 
Ut wisi enim ad minim veniam, quis nostrud ex-
erci taion ullamcorper suscipit lobortis nisl ut 
aliquip ex en commodo consequat. Duis te feugi-
facilisi.per suscipit lobortis nisl ut aliquip ex en 
commodo consequat. Duis te feugifacilisi. Lorem 
ipsum dolor sit amet, consectetuer adipiscing elit,
sed diem nonummy nibh euismod tincidunt ut 
lacreet dolore magna aliguam erat volutpat. Ut 
wisis enim ad minim veniam, quis nostrud exerci 
tution ullamcorper suscipit lobortis nisl ut aliquip 
ex ea commodo consequat. Duis te feugifacilisi. 
Duis autem dolor in hendrerit in vulputate velit 
esse molestie consequat, vel illum dolore eu feu-
giat nulla facilisis at vero eros et accumsan et 
iusto odio dignissim qui blandit praesent luptatum 
zzril delenit au gue duis dolore te feugat nulla fa-
cilisi.ipsum dolor sit amet, consectetuer  adipisc-
ing elit, sed diem nonummy nibh euismod tin-
cidunt ut lacreet dolore magna aliguam erat volut-

Lorem Ipsum

Lorem Ipsum dolor 1
Lorem Ipsum dolor 2

Lorem Ipsum dolor 3

Lorem Ipsum dolor 4

Alice Announces 
Doors She Used!!

January 15, 1997 Volume 1, Issue 1

Alice



BobAlice

Alice can use quantum information 
(qubits) to send a random key to Bob.



BobAlice

Quantum key distribution, augmented by
classical protocols that correct errors and 

amplify privacy, is provably secure 
against arbitrary eavesdropping attacks.

Alice can use quantum information 
(qubits) to send a random key to Bob.



Information vs. disturbance

The protocol works because: it is impossible to collect any 
information that distinguishes the nonorthogonal states ÆÚ, 
ØÚ, ∞Ú, ≠Ú without creating a disturbance. 

What if Eve collects just a little bit of information --- how big a 
disturbance must she cause? Or if she is permitted to alter the 
fidelity of the state slightly, how much information can she 
gain?

Quantum key distribution provides an excellent setting for  
studying the information/disturbance tradeoff, which is of 
fundamental interest in quantum information theory. We have 
well motivated ways to quantify both information gain and 
disturbance: what does Eve know about the key, and what 
error rate do Alice and Bob detect?



BB84 quantum key distribution

In the real world, communication channels (especially quantum 
channels) are imperfect. Therefore, Alice and Bob can expect to 
find some errors in their verification test even if Eve has not 
collected any information at all. Still, when errors occur, they (as 
cautious cryptologists) should pessimistically assume that the 
errors were caused by Eve’s tampering.

Thus we must enhance the BB84 QKD protocol in two ways. 
First we should incorporate (classical) error correction, to ensure 
that Alice and Bob really have the same secret key. Second, we 
should include (classical) privacy amplification. After error 
correction, Alice and Bob agree on n bits about which Eve has 
only a little information. Then A. and B. both process the bits,
extracting r < n bits about which Eve has even less information.



Error correction and privacy amplification

For example, to do error correction, Alice and Bob both divide 
their private key bits into blocks of three.

(011)(101)(001) ( 11)(101 0)(001)
(Bob’s errors are shown in red.) Then Alice announces her error 
syndrome: the bit (if any) in each block that differs from the other 
two. She flips this bit and so does Bob.

(111)(111)(000) ( 11)(110 0)(000)
Now each of Alice’s blocks is a codeword of the 3-bit repetition 
code. Bob decodes his block by majority voting. If there is no 
more than one error in a block of three, then Bob’s decoded bit 
agrees with Alice’s.

(1) (1) (0) (1) (1) (0)



Error correction and privacy amplification

After error correction, Alice and Bob are likely to share the same 
bits. Next they perform privacy amplification to extract bits that 
are more secure. For example Alice and Bob might divide their 
corrected key bits into blocks of three. And in each block 
compute the parity of the three bits.

[ ] [ ] [ ](1) (1) (0) (0) (1) (0) (1) (0) (0)

[ ] [ ] [ ]0 1 1

If Eve has a little bit of information about each corrected bit,
she’ll know less about the parity bit of a block.



Security of BB84

To make a precise statement about the security of the BB84 
protocol, we consider the asymptotic behavior for very large key
length. Then:

Theorem: For any attack by Eve (such that the verification test 
succeeds with probability that is not exponentially small), if Alice 
and Bob accept the key then Bob’s key agrees with Alice’s with 
probability exponentially close to 1, the key is nearly uniformly 
distributed, and  Eve’s information about the key is exponentially 
small.
“Exponentially close/small/near” can be taken to mean < exp(- αr) where r is 
the length of the final key and α is a constant; Eve’s information is the mutual 
information of the key and the outcome of Eve’s measurement of her probe. 
Informally, the theorem says that if Alice and Bob don’t catch Eve (and abort 
the protocol) then Eve almost certainly knows almost nothing.



Security of BB84

As cautious cryptologists, we make no assumptions about 
Eve’s technological power. In particular, she might have a 
quantum computer, enabling her to make collective 
measurements on all the qubits at once. The security is 
information- theoretic.

This information-theoretic security is sometimes called 
“unconditional security,” meaning that Eve’s attack is 
completely unrestricted. However there are conditions on the 
equipment used in the protocol --- Alice’s source of BB84 
states and Bob’s detector that measures X or Z. 



Key distribution scenarios

What does Eve know about Bob’s key?

Eve squash

Pairs

Alice: uncharacterized 
measurement of general 
system

Bob: standard qubit
measurement

Eve

Pairs

Alice: standard qubit
measurement

Bob: uncharacterized 
measurement of general
system

What does Eve know about Alice’s key?



Key distribution scenarios
Security for either an uncharacterized source or an 
uncharacterized detector follows from security of a protocol 
in which Eve distributes pairs to Alice and Bob, where Alice 
receives a general system, and Bob receives a qubit

Eve

Bob: standard qubit
measurement

Alice: uncharacterized 
measurement of general
systemEve prepares

pairs

(Uncharacterized source if Alice sends to Bob; 
uncharacterized detector if Bob sends to Alice. In either 
case, we bound Eve’s information about Bob’s key.)



Uncharacterized source

Eve squash

Pairs

Alice: uncharacterized 
measurement of general 
system

Bob: standard qubit
measurement

A’

A

To emit a state in her signal space A, Alice first prepares an 
entangled state of A and an auxiliary system A’. Then she 
measures A’. Let a=0,1 label Alice’s basis choice (both 
bases equiprobable). Depending on the value of a, Alice 
performs one of two two-outcome POVMs: measurement 
M0 if a=0 and measurement M1  if a=1 . In either case, the 
measurement outcome determines the value of Alice’s key 
bit g=0,1 (the two key bit values might not be equiprobable). 
The source emits the state ρ(a,g) with probability pa,g . 



Uncharacterized source

Eve squash

Pairs

Alice: uncharacterized 
measurement of general 
system

Bob: standard qubit
measurement

A’

A

We can realize in this way any source that does not leak information to 
Eve about Alice’s declared basis: Let a=0,1 label Alice’s basis choice 
(both bases equiprobable) and g=0,1 the value of her key bit (the two 
key bit values might not be equiprobable). The source emits the state 
ρ(a,g) with probability pa,g where 

0,0 0,1 1,0 1,1(0,0) (0,1) (1,0) (1,1).p p p pρ ρ ρ ρ+ = +

Although the emitted state, averaged over the key bit, is basis 
independent, the source imperfections could be basis dependent; e.g., 
the source is rotated when sending in the X basis, but not the Z basis. 



Protocol 1: BB84
Let Ω=1,2,3,…, 4n(1+ε).

(1) Alice creates random bit sequence {ai } (basis choice) and {gi } (key bits). Alice 
randomly chooses a subset R of Ω with size  |R|= 2n(1+ε).
(2) Bob creates random bit sequence {bi } (basis choice).

(3) Alice sends ρ(ai ,gi ).for each i.
(4) Bob measures Ζ if bi=0, and measures X if bi=1, obtaining key bits {hi } (hi=0 for 
outcome +1 and hi=1 for outcome -1).

(5)  Bob announces {bi } and Alice announces {ai } and R. If T= { i œ R | ai= bi } has 
size less than n, abort. Bob chooses a random subset S Œ { i œ Ω - R | ai= bi} with 
size n (if that’s not possible, abort).
(6) Alice and Bob compare gi and hi for i œ T to determine the error rate δ. If δ is too 
large, abort.

(7) Bob applies a random permutation π  to the positions of the n qubits in S and 
announces π. Bob announces a binary linear code C with |C|= 2r that corrects n(δ+ε) 
errors occuring in random positions, with probability exponentially close to unity.
(8) The sifted key κsif of length n is defined as the sequence {hi } iœS. The final key 
κfin of length r is the coset κsif + C^. 
(9)  Alice obtains κsif through encrypted communication with Bob (consuming τ bits 
of their previously shared secret key), and she computes κfin .



Key generation rate
(7) Bob applies a random permutation π  to the positions of the n qubits in S and 
announces π. Bob announces a linear code C with |C|= 2r that corrects n(δ+ε) errors 
occuring in random positions, with probability exponentially close to unity.

(8) The sifted key κsif of length n is defined as the sequence {hi } iœS. The final key κfin
of length r is the coset κsif + C^. 

(9)  Alice obtains κsif through encrypted communication with Bob (consuming τ bits 
of their previously shared secret key), and she computes κfin .

In the limit of large n, the number of key bits sacrificed for error correction 
approaches nH2(δ), where 2 2( ) log (1 ) log (1 ).H δ δ δ δ δ= − − − −
We will show that the final key 
length r=n[1-H2(δ )], is achievable 
asymptotically, so that the rate of 
generation of final key from sifted 
key is 

This rate hits zero  for δ=.1100 .

( )2Max 1 2 ( ),0 .Rate H δ= −
0.02 0.04 0.06 0.08 0.1

0.2

0.4

0.6

0.8

1
R

δ



Protocol 2: The Mayers basis-flip trick
In Protocol 1, the final key is determined by Bob in step 8; the final step 9 
assures that Alice’s key agrees with Bob’s and leaks no info to Eve. 

Now, Eve’s information I1 about Bob’s key is unaffected 
if we replace:  (3) Alice sends ρ(ai ,gi ).for each i. 
with:

(3’) For i œ R Alice sends ρ(ai ,gi ). 
For i œ Ω - R Alice sends ρ(ai∆1,gi ).

Alice sends in the “right” basis in the test set, but in the “wrong” basis in the 
key-generating set. But Bob extracts his key and Eve launches her attack 
without knowing anything about Alice’s key bits {gi } . Therefore, only the 
states averaged over the {gi } are relevant to Eve and Bob, and these states 
are unchanged by the basis flip. Therefore, Protocol 1 and Protocol 2 are 
identical to Eve and Bob, and in particular, Eve’s information about Bob’s 
key is the same in either protocol: I1 =I2 .

Note: we assume that Alice sends a product state: ≈iρi
Otherwise, correlations between the test bits and key bits might spoil the 
equivalence. (Similarly, in the “time-reversed” situation, the signals are 
measured individually rather than collectively.)

Mayers



Protocol 3: Increasing Eve’s power
It won’t change anything if we imagine that it is Bob rather than Alice who 
uses the wrong basis on the key-generating set. (All that matters is that 
they use the same basis for the test set and opposite bases for key 
generation.)  Now we further modify Protocol 2 in Eve’s favor, by allowing 
Eve to control Alice’s source:

(3’’) Eve prepares Bob’s qubits and her ancilla
system in any state she chooses.

Eve’s maximum information about Bob’s key is at least as large for Protocol 
3 as for Protocol 2: I1 =I2 § I3. 

To complete the proof, we are to show that I3 is small: Eve cannot predict 
Bob’s key because Bob is measuring in the “wrong” basis.

Protocol 3 is secure because, in order to pass the verification 
test, Eve must send to Bob states that are close to the BB84 
states; thus when Bob measures in the conjugate basis, it is 
hard for her to predict what Bob will find. The reduction to 
Protocol 3 is a simplification, as we no longer need to 
consider separately the attack by Eve and the (possibly 
defective) performance of Alice’s source.

Mayers



Security of Protocol 3: Verification
In Protocol 3, Eve knows {ai } and {gi } , and she can prepare any states she 
pleases; hence there is no loss of generality if we assume ai =gi =0. But 
Eve doesn’t know which are the test bits and which are the key bits. 

The crux of proving security is showing that privacy amplification is effective 
in reducing Eve’s information about Bob’s key to a negligible amount…

First, what is learned from the verification test? The test set T (with size at 
least n) is chosen randomly, and the error rate (Ζ=-1) is δ. From classical 
sampling theory, if the qubits in the key-generating set S were also 
measured in the Z basis, the joint probability of finding more than n(δ+ε)
errors in S and δ errors in T (for any strategy by Eve) would be

2Prob exp / 4 (1 ) .nε δ δ ≤ − − 
Therefore, unless Eve uses a very inefficient strategy that passes the 
verification test with exponentially small probability, we conclude that the 
probability that the state ρ on E ≈ S , conditioned on the outcome of the 
test, has more than n(δ+ε) errors is exponentially small. 



Security of Protocol 3: Permutation
Bob randomly permutes his qubits, after which the state in E ≈S
shared by Eve and Bob is 

( ) ( )-1 †
sym =(N!) | | U UE EI Iπ π

π

ρ π π ρ〉〈 ⊗ ⊗ ⊗∑
The linear code C used in privacy amplification can correct n(δ + ε) randomly 
distributed errors with high probability. Denote by  the set of correctable 
errors {e} , and by P the projector onto the space good spanned by {|eÚZ } . 
Then the state ρ’ resulting from applying P to ρsym is very close to ρsym :

sym
sym sym

sym

( ) ( )
; ( , ) ( ) 1

( )
E E

E
E

P I P I
F Tr P I

Tr P I
ρ

ρ ρ ρ ρ η
ρ

⊗ ⊗
′ ′  = = ⊗ ≥ −  ⊗ 

 




where η is exponentially small. 

We will see that if the state ρ’ instead of ρsym were used to generate the key 
bits, then Eve would have no information about the final key (I3 =0). Then it 
will be easy to show that Eve’s information is exponentially small when ρsym
is used... 



Security of Protocol 3: Virtual error correction
To prove that Eve has no information about Bob’s final key if the state ρ’ is 
used for key generation, we will use the concept of virtual error correction. 
The idea is that there is a procedure Bob could have used to completely 
remove Eve’s entanglement with his qubits. This suffices to ensure privacy, 
even if Bob did not really use this procedure (cf., Shor-Preskill ’00).

In Protocol 3, Bob measures his qubits in the Z basis for the verification 
test. To generate his final key, he measures his qubits in the X basis, and 
then applies the privacy amplification algorithm.

We will construct a box that Bob could use. If the box receives X-basis 
eigenstates, it extracts the corresponding final key. But if it receives states 
in good (with correctable Z-basis errors), it extracts a random, private final 
key.

finκ

sifκ

0

?

X basis
0

e

y

?

Z basis



Security of Protocol 3: Virtual error correction

The box has two registers: an 
input register for the sifted 
key, and an output register 
where the final key will be 
recorded. Measuring the 
output register after the action 
of the box is equivalent to 
measuring the input in the X 
basis and processing it 
classically to find the final 
key.

finκ

sifκ

0

?

X basis

n qubits

r qubits

S

Q

0

e

y

?

Z basis

n qubits

r qubits

S

Q

But if the input is any state in good (with correctable errors in the Z basis), 
then the output is:

2 1
/ 2

0
| 0 2 |

r

r
Z X

x
x

−
−

=

〉 = 〉∑
When Bob measures in the X basis he 
obtains a random outcome that Eve can’t 
possibly predict.



Security of Protocol 3: Virtual error correction
To understand how the box is constructed, we recall how the linear code C
is used in the privacy amplification algorithm. The code is an r-dimensional 
subspace of . It has an r µ n generator matrix G whose rows generate 
the code space. An r - bit message y can be encoded with G: 

2
nF

.y y G→
There is a decoding function f such that if e is in the set  of correctable 
errors, then ( ) .f y G e y+ =�
Random errors of weight n(δ + ε) are contained in the set  of correctable 
errors with high probability.

Bob’s final key κfin of length r is the coset κsif + C^, where C^ is the 
orthogonal complement of C. Note that the rows of G and hence the 
colums of the n µ r matrix GT span the space orthogonal to C^ ; hence we 
can compute the final key by applying GT  to the n - bit input string x:

.Tx x G→
Our box will exploit the duality between constructing a C codeword with G
and extracting a C^ coset with GT.



Security of Protocol 3: Virtual error correction
We can construct a circuit that 
performs the operation

in the X basis: there is a controlled-
NOT gate for each nontrivial matrix 
element.

( , ) ( , )Tx y x y x G→ + ix
jy

ix
T

j i ijy x G+

ix
jy

i j jix y G+
jy

How does the circuit act in the Z
basis? The CNOT reverses 
direction, so that the operation is

( , ) ( , ) .x y x y G y→ +
Thus the circuit that computes the C^ coset in the X basis is a C encoder 
in the Z basis. 

TG X basis G Z basis



Security of Protocol 3: Virtual error correction
Now suppose that we append to this Z
basis encoder a decoder that executes 
error correction:G Z basis

x

y

x y G+

y
Z basisf

x y G+

( )y f x y G+ +

x y G+

y
Then if x is a correctable error 
in the set  , the decoder 
transforms the output register 
to the state | 0 .Z〉

Furthermore, the action of the decoder circuit in the X basis preserves the 
value of the output register. We have constructed our box!

finκ

sifκ

0

?

X basis
0

e

y

?

Z basis



Security of Protocol 3: Bounding Eve’s information

finκ

sifκ

0

?

X basis
0

e

y

?

Z basis
• Bob measures in the Z basis in the verification test and in the X basis to 
generate the key. 

• If Bob uses the box, followed by an X-basis measurement, to find his final 
key, the result is the same as if he measured the sifted key in the X basis and 
then applied classical privacy amplification to the outcomes. 

• We know from the verification test that the actual state ρsym used to generate 
the key is exponentially close in fidelity to a state ρ’ with support on the 
correctable space good .  

• We have shown that if the state ρ’ were used, then the state that Bob 
measures to find the final key would be  -- the outcome is random and 
unknown by Eve. If the actual state is used instead, Bob measures a state that 
is exponentially close to          -- the outcome is nearly random and Eve knows 
almost nothing. 

| 0 Z〉

| 0 Z〉

S

Q
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• We have shown that if the state ρ’ were used, then the state that Bob 
measures to find the final key would be  -- the outcome is random and 
unknown by Eve. If the actual state is used instead, Bob measures a state 
that is exponentially close to          -- the outcome is nearly random and Eve 
knows almost nothing. 

| 0 Z〉

| 0 Z〉

Bounding Eve’s information is not technically difficult...

0 | | 0 1 ,Z Q Zρ η〈 〉 ≥ −
In the worst case, Eve and Bob share a pure state. Bob’s measurement 
prepares a state for Eve, and the information she can acquire about what 
was prepared, by Holevo’s theorem, is bounded by her Von Neuman
entropy:

3 2( ) ( ) ( )E QI S S H rρ ρ η η≤ = < +

where η is exponentially small.

The key is nearly random. If two states are exponentially close to one 
another, then the probability distributions they generate when measured 
are exponentially close to one another. The Shannon entropy of the r-bit 
key satisfies:

key (1 2 )H r η≥ −
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0 | | 0 1Z Q Zρ η〈 〉 ≥ − ⇒

To establish a key that is truly randomly distributed, Bob can announce a 
random r-bit sequence w and add  it to the key y generated by the BB84 
protocol. Since Eve knows w, her information I about the new key is  

1 2

(new key) (new key|Eve)
(old key|Eve)
(old key) ( ) 3

I H H
r H
r H I H rη η
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Security of BB84
Theorem: Security of BB84 with an uncharacterized source.
Suppose that Alice’s source emits products states, and that 
each signal, when averaged over Alice’s key bits, is basis-
independent; the source is otherwise uncharacterized. 
Suppose that Bob’s detector is perfect. Suppose Eve uses a 
strategy that passes the verification test with a probability that 
is not exponentially small. Then for any such attack by Eve, 
Alice and Bob agree with high probability on a final key that is
nearly uniformly distributed, and Eve’s information about the 
final key is exponentially small. Secure final key can be 
extracted from sifted key at the asymptotic rate:

where δ is the bit error rate found 
in the verification test. 

( )2Max 1 2 ( ),0R H δ= −

M. Koashi and J. Preskill, “Secure quantum key 
distribution with an uncharacterized source,” 
quant-ph/0208143.



Key distribution scenarios

What does Eve know about Bob’s key?

Eve squash

Pairs

Alice: uncharacterized 
measurement of general 
system

Bob: standard qubit
measurement

Eve

Pairs

Alice: standard qubit
measurement
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measurement of general
system

What does Eve know about Alice’s key?



Security of BB84
Theorem: Security of BB84 with an uncharacterized detector.
(Cf., Mayers ’96.) Suppose that Alice’s source can be realized 
by performing standard qubit measurements on half of an 
entangled state. Suppose that Bob’s detector measures 
signals individually rather than collectively, but is otherwise 
uncharacterized. Suppose Eve uses a strategy that passes 
the verification test with a probability that is not exponentially 
small. Then for any such attack by Eve, Alice and Bob agree 
with high probability on a final key that is nearly uniformly 
distributed, and Eve’s information about the final key is 
exponentially small. Secure final key can be extracted from 
sifted key at the asymptotic rate:
where δ is the bit error rate found in the verification test. 

( )2Max 1 2 ( ),0R H δ= −



Security of BB84
Neither theorem applies when both the source and the 
detector have small imperfections that depend on the basis 
used in the protocol, the case relevant to real-world 
implementations of QKD. It is intuitively clear that BB84 
should remain secure if the imperfections are “sufficiently 
small.” Can we calculate how the key generation rate depends 
on the tolerance to which the equipment is characterized?

vs.

Alice Bob Eve Fred
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Eve squash

Pairs

Alice: 
standard qubit
measurement

Bob: 
standard qubit
measurement

Fred Fred

Fred knows the basis used, but the basis dependence of his 
attack is limited. Eve’s attack is basis independent, but 
otherwise arbitrary.
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Security of BB84

Eve squash

Pairs

Alice: 
standard qubit
measurement

Bob: 
standard qubit
measurement

Fred Fred

Fred knows the basis used, but the basis dependence of his 
attack is limited. Eve’s attack is basis independent, but 
otherwise arbitrary.

In this scenario (still not the most general possible), security
can be proven for generic sufficiently weak basis-dependent 
attacks by Fred.

D. Gotttesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of 
quantum key distribution with imperfect devices,” quant-ph/0212066.



Security of quantum key distribution

Eve squash

Pairs

Alice: uncharacterized 
measurement of general 
system

Bob: standard qubit
measurement

• Perfect detector and uncharacterized source (emitted states, 
averaged over key bit, are independent of the basis used) 
[Koashi-Preskill ’02].

• Perfect source and arbitrary uncharacterized detector 
[Mayers ’96].

• Generic small flaws in source and detector, controlled by 
adversary. (Key generation rate is reduced by the flaws.) 
[Gottesman-Lo-Lütkenhaus-Preskill ’02].
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averaged over key bit, are independent of the basis used) 
[Koashi-Preskill ’02].

• Perfect source and arbitrary uncharacterized detector 
[Mayers ’96].

• Generic small flaws in source and detector, controlled by 
adversary. (Key generation rate is reduced by the flaws.) 
[Gottesman-Lo-Lütkenhaus-Preskill ’02].
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