
Université de Sherbrooke

Part I: Composability Theorem. Joint work with
Michael Ben-Or

Part II: Composability of QKD. Work (in progress)
with Michael Ben-Or, Michal Horodecki,
Debbie Leung and Jonathan Oppenheim

Protocols often have subprotocols. For example,
quantum key distribution (QKD) uses authentication as
a subprotocol to make sure that (1) the classical
messages sent in the protocol are not modified by Eve
and (2) Eve cannot pretend to be Alice or Bob.

QKD

Alice announces the bases [using an
authenticated channel].

To design a QKD protocol we need to know the ideal
authentication task, but we should not need to know
which authentication protocol is used. In general,
the ideal task is the only thing that the designer of an
application protocol should need to know about.

Authentication KK
Alice in the
application

Bob in the
application Alice Bob

The main general question is how do we prove that a
protocol provides what is promised by its associated
ideal task? We want to make sure that the protocol can
be used in all properly designed application protocols!

This is composability!

Authentication with QKD as
a subprotocol

Authentication
Trusted party

m (m, Alice)

It is as if a trusted party took the message from the
sender and delivered it unmodified to the receiver
together with the sender identity. It also sends this
information to anyone else who asks for it.

(m, Alice)

There exists unconditionally secure classical protocols
for classical messages. However, they require that
Alice and Bob initially share a small private key k.

The small key is an internal resource, not an input.
The Ideal KD which generates the small key is a
subprotocol.

k k
Ideal KD

What about the security of an authentication
protocol when a real QKD protocol, not an ideal
one, is used as a resource. Does the real QKD
protocol provides what is promised?

QKD

k k

QKD

k
Authentication

k

k k

A negative answer could mean an important
degradation of the key after a few repetitions.

Ben-Or, Michal Horodecki, Leung, Mayers and Oppenheim (in progress)

G(A) denotes a protocol G with a subprotocol A.

Example: Authentication(Ideal QKD)

Authentication

Ideal QKD

G β γ

B β

The designers of the application protocol G should only
worry about the definition of β and γ. The designer of the
protocol B should only worry about the definition of β.

γ = Ideal Authentication, G = Authentication protocol.
β = Ideal QKD, B = QKD protocol,

• A model for the ideal tasks β

• A model for the application protocols G(β) and the
subprotocols B

• A definition of the relation « B securely realises β »
(simply noted « B s.r. β »).

• A general composability theorem:

(a) B s.r. β ∧ G(β) s.r. γ � G(B) s.r. γ

(b) B s.r. β � B(m) s.r. β(m)

Back to the QKD example…

The security of QKD requires that Alice`s key
and Bob’s key are almost always identical.

For simplicity, we will assume it is required
that they are always identical.

k kρ

Eve in the application protocol obtains a state ρk which
provides a very small amount of information about the
key k. The honest parties in the application protocol also
receive the key.

Alice Bob

Ideal QKD
Jam

k k

Eve

In an ideal QKD protocol, the participants interact
directly with an ideal party which provides the key.
The participants directly output this key to the
application protocol.

If Jam = 1, k = fail.

If Jam = 0, k ∈ R{0,1}m

� ⊗=
k

kkkkp ρρ)(1
)

� ⊗= −

k

m kk ρρ 2ˆ0

�
−=

k
k

m ρρ 2 where

ερρ ≤)ˆ,ˆ(10SD

The real protocol -securely realises the ideal private
QKD if

ε

)}2/1,ˆ(),2/1,ˆ{(E whereI)ˆ,ˆ(1010 ρρρρ = (Ε)= accSD

{ } { }fail1,0 Υmk ∈

The security of QKD is not only a small mutual
information. We must also require a priori uniformity,
i.e., in the ideal case, for all k, p(k | Jam = 0) = 2-m.

The issue of composability is important in standard
cryptography and was progressively addressed in the
last 10 years! The techniques currently used for
classical composability can be useful to build a theory
of quantum composability.

• Intuitively, the fact that Eve cannot distinguish
between the real and the ideal protocols should
allow us to securely replace the ideal QKD
protocol by the real QKD protocol in any
application protocol.

• What formal general security definition (for the
application and the subprotocols) is suggested
by this intuition?

Alice Bob

k k ρk

Authentication

{ } { }fail1,0 Υmk ∈

Alice Bob

k k

Ideal QKD
Jam

fail1Jam =�= k

Simu-
lator

ρ

Program i Program jInternal
communication

InputOutput InputOutput

A quantum protocol is a collection of circuits regrouped in
disjoint sets called programs together with channels for internal
communication and for communication with the environment.

The communication structure of a protocol determines two
layers: the functional and the internal layers. The functional
layer is defined by the relationship between the input and
output registers of the protocol.

The internal layer is defined by the details of the program
(the circuits) and the internal communication in the protocol.
It`s the means by which the functionality layer is realised.

Circuit 2

Alice`s program

Its
Environment

Internal registers for
communication with
other programs (i.e.,
Bob`s program) in
the same protocol

Inputs
and
outputs
registers

• Registers are sent through communication channels that
respect assumptions (e.g., private or not, authenticated or not,
etc.) We consider that these channels and assumptions are
part of the definition of the protocol.

• The definition of the protocol also includes the access rule
(e.g. how many participants can be corrupted).

• Circuits are automatically activated when all the required
registers are received.

• All internal channels (between the programs) pass through
the adversary

• Every program runs at a different location.

Alice`s Dummy
Program

Bob`s Dummy
Program

Alice Bob
Input Output Input Output

Ideal Internal
Channels

They just
forward
the input
and the
output

A more secure ideal protocol provides a stronger (more
secure) definition of security. The strongest definition will
state that no party can be corrupted in the ideal protocol and
it will use ideal channels with guarantee of delivery, etc. The
problem, of course, is to find protocols that achieve this level
of security. A trade off is neccessary.

Example: the ideal internal channels offer no guarantee of
delivery because the real channels can be jammed.

An ideal protocol is simply a
special case of a real protocol.

The functionality layer is defined by the relationship between the
inputs and the outputs of the dummy parties. This relationship is
in turn determined by the internal layer which is the ideal
functionality β and the communication between the dummy parties
and β .

Honest inputs
and outputs

The adversary A substitutes itself for the
honest programs. Moreover, all internal
communications in B pass through the
adversary A.

The ideal model has
the same structure,
but B is replaced by
β and A by S.

Contains only the
non corrupted
programs.

B A

Free
communication

Bit Z(B,A)

A ≠ Alice

The worst case real adversary (to challenge the simulator S) is the
dummy adversary which simply follows any request from the
environment.

This can be proven, but this will only be useful to provide an
intuition behind our definition. A definition does not require a
proof.

The main point is that we can assume that the
real adversary is part of the environment. The
real adversary disappears from the picture!

B

Z(B)

β S

Z(β,S)

Basic Idea

For all environment Z, there must exist a
simulator S such that Z(B) ≈ Z(β,S)

For any two random binary variables Y, Y` let us write

Y ≈e Y` if | Pr(Y = 0) - Pr(Y` = 0)| ≤ e. .
Let PP be the set of all polynomial functions.

Definition. A protocol B for an ideal functionality β is
secure, if for any environment Z there exists a
simulator S such that (∀ d ∈ P) P) (∃ n0 ∈ℵ) (∀ n > n0)

Z(B) ≈e Z(β, S)
where e = 1/d(n).

The simulator S must have a polynomial complexity c ∈ P that
depends only on B (i.e. not on Z or n0). Also, n0 can only depend on
d and on the respective polynomial complexity c, c` of S and Z (not
on their actual circuits). The actual circuit of S can depend on n.

For every c ∈ P, let T(c) be the set of programs of complexity c.
Formally, the order for the quantifiers is:

(∃ c ∈ PP)(∀ c’ ∈ PP)(∀ d ∈ P) P) (∃ n0 ∈ℵ)(∀ n > n0)
(∀ Z ∈ T(c’))(∃ S ∈ T(c))

Z(B) ≈e Z(β, S)
where e = 1/d(n).

About the Computational Setting

There are three steps in the proof.

(1) Essentially, we must construct a simulator S(G(B)) for G(B)
given the simulators S(G(β)) for G(β) and S(B) for B.

(2) We must show that the size of the simulator S(G(B)) is a
polynome that depends only on the protocols G(β) and B.

(3) We must show that the lower bound n0 for n depends only on
the polynome d (for the indistinguishability) and on the
complexity of the circuits Z and S, not on the actual circuits.

All the security properties of the protocol considered are
encapsulated into the non distinguishability of a single
bit returned by the environment. For example, both
privacy and uniformity are included in the case of QKD.

This approach can be used to define the security of any
protocol and this is very powerful.

B s.r. β ∧ G(β) s.r. γ � G(B) s.r. γ

γ S(G(B))

Recall that we want to prove

s.r. = securely realises

The subcircuit G of the protocol G(B) is a part of
the environment for B.

Diagram 1 Diagram 2

β

≈

Diagram 2 Diagram 3

β
β

Diagram 3 Diagram 4

β

β
γ

≈

β

Diagram 4 Diagram 5

β βγ

= S(G(B))

γ

Michael Ben-Or, Michal Horodecki,
Debbie Leung and Jonathan Oppenheim

Are Uniformity and Privacy
enough for composability?

α

α

≤

≤=−=

)jam|;(:Privacy

))0jam|()(0jamPr(:Uniformity

YkI

kHm

Y = Eve`s optimal measurement outcome.

Recall: Composability means there exists a simulator so
that the ideal case is indistinguishable from the real case.

we obtain that

key k with probability 2-m (ideal) and
key k with probability p(k | jam = 0) (near ideal)

are indistinguishable.

So, it is enough to show that the real QKD protocol and a
near Ideal QKD protocol which outputs k with probability
p(k | jam = 0) are indistinguishable.

Recall: Composability means there exists a simulator so
that the ideal case is indistinguishable from the real case.

Alice Bob

k k ρ

Modified
Ideal QKD

Jam

The simulator runs the real QKD protocol while
interacting with the environment. This produces ρ.
If the simulated key k* = fail, it sets jam = 1. In all
cases, it throws away the simulated k*.

Alice Bob
Authentication

{ } { }fail1,0 Υmk ∈

We can show that

αρρ m
acc

m ESD 2Jam)|(2)ˆ,ˆ(10 ≤≤ I

where Iacc(E| Jam) = max I(k;Y| Jam) and m is the
length of the key. (We omit the proof here).

The large factor 2m looks bad, but actually it is not so
bad because the bound α on Iacc respects

where n can be taken arbitrarily large, independently
of m.

nξα −≤ 2

• Mayers and Shor-Preskill security proofs can be
adapted for composability without the large factor 2m.

• We do not know if B92 is composable without this
large factor (since there is no security proof).

• The composability of QKD is useful in application
protocols that also respect this universal security
definition. Multiparty secure computation and other
tasks respect this universal security definition. (Not
yet formally proven).

• The large factor 2m might not be so bad, but still it
makes a difference. We have no reason to believe
that it is neccessary!

• Obtain a more flexible « universal » security
definition because the one we have now is not so
easy to achieve. We already have one proposal.

Simulator that interacts with an ideal protocol for specific
protocols (1985).

Universal composability came after Goldreich, Micali,
Wigderson in 1987.

The idea of using the environment with an output bit as a
distinguisher was introduced in 2000 (Canetti). This takes
care of concurrent composability.

Proved for quantum protocols in 2002 (Ben-Or, Mayers).
At the same time, a modified and simpler (but perhaps
equivalent) model was proposed which allowed to extend
the result. This is the model used here.

The simulator for ΠF and ρ have polynomial size c(ΠF) and c(ρ),
respectively. The simulator for Πρ which we will construct
consists of a constant size manager that forwards the requests from
the environment to one of these two simulators. So, it has
polynomial size c ∈ PP.

Consider any c``, d ∈ PP. We pick for k0 the maximum of k0(ΠF, c,
c`` + c(ρ), 2d) and k0(ρ, c, c`` +|Π|, 2d).

Let k > k0 and Z ∈ T(c``(k)). We need to find S ∈ T(c(k)) such that
Z(Πρ) ≈d(k) Z(GS). We have |Z| = c`` and |Π| = c. So |Z + Π| = c`` +
|Π| is a polynome. The definition of k0 and the security of ρ gives us
S(ρ) such that

[Z + Π](ρ) ≈1/(2d(k)) [Z + Π](FS(ρ)) (1)

We also have | Z + S(ρ) | = c`` + c(ρ). So the security of ΠF and
the definition of k0 guarantees the existence of a simulator S(ΠF)
such that

[Z + S(ρ)](ΠF) ≈1/(2d(k)) [Z + S(ρ)](GS(ΠF)) (2)

The environment Z (i.e., the dummy adversary Ã) does not see
the (honest) I/O communication between Π and ρ. It sees Π and
ρ as if they were two independent protocols. Note that the
simulator S(ΠF) provides the I/O interface to F that is needed by
S(ρ). This is possible because S(ΠF) corrupts the dummy
parties of F as requested by the environment Z and allowed by
the access rule of F. So, the simulator S(ρ) interacts with S(ΠF)
to access F.

