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Protocols often have subprotocols. For example, 
quantum key distribution (QKD) uses authentication as 
a subprotocol to make sure that (1) the classical
messages sent in the protocol are not modified by Eve 
and (2) Eve cannot pretend to be Alice or Bob.    

QKD

Alice announces the bases [using an 
authenticated channel].



To design a QKD protocol we need to know the ideal 
authentication task, but we should not need to know 
which authentication protocol is used. In general,
the ideal task is the only thing that the designer of an 
application protocol should need to know about.  
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application

Bob in the 
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The main general question is how do we prove that a 
protocol provides what is promised by its associated 
ideal task?  We want to make sure that the protocol can 
be used in all properly designed application protocols!

This is composability!



Authentication with QKD as
a subprotocol



Authentication
Trusted party

m (m, Alice)

It is as if a trusted party took the message from the 
sender and delivered it unmodified to the receiver 
together with the sender identity. It also sends this
information to anyone else who asks for it.

(m, Alice)



There exists unconditionally secure classical protocols
for classical messages.  However, they require that
Alice and Bob initially share a small private key k.

The small key is an internal resource, not an input.  
The  Ideal KD which generates the small key is a 
subprotocol. 

k k
Ideal KD



What about the security of an authentication 
protocol when a real QKD protocol, not an ideal
one, is used as a resource.  Does the real QKD 
protocol provides what is promised?
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A negative answer could mean an important 
degradation of the key after a few repetitions.
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G(A) denotes a protocol G with a subprotocol A.  

Example:  Authentication(Ideal QKD)

Authentication

Ideal QKD



G β γ

B β

The designers of the application protocol G should only 
worry about the definition of β and γ. The designer of the 
protocol B should only worry about the definition of β. 

γ = Ideal Authentication, G = Authentication protocol. 
β = Ideal QKD, B = QKD protocol,



• A model for the ideal tasks β

• A model for the application protocols G(β) and the 
subprotocols B

• A definition of the relation « B securely realises β »
(simply noted « B s.r. β »).

• A general composability theorem:

(a) B s.r. β ∧ G(β)  s.r. γ � G(B)  s.r. γ

(b)  B s.r. β � B(m) s.r. β(m)



Back to the QKD example…

The security of QKD requires that Alice`s key 
and Bob’s key are almost always identical.  

For simplicity, we will assume it is required 
that  they are always identical.   



k kρ

Eve in the application protocol obtains a state ρk which
provides a very small amount of information about the 
key k. The honest parties in the application protocol also 
receive the key.



Alice Bob

Ideal QKD
Jam

k k

Eve

In an ideal QKD protocol, the participants interact 
directly with an ideal party which provides the key. 
The participants directly output this key to the 
application protocol.  

If Jam = 1, k = fail. 

If Jam = 0, k ∈ R{0,1}m
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The security of QKD is not only a small mutual
information.  We must also require a priori uniformity, 
i.e., in the ideal case,  for all k, p(k | Jam = 0) = 2-m.  





The issue of composability is important in standard 
cryptography and was progressively addressed in the 
last 10 years!   The techniques currently used for 
classical composability can be useful to build a theory 
of quantum composability.   



• Intuitively, the fact that Eve cannot distinguish 
between the real and the ideal protocols should 
allow us to securely replace the ideal QKD 
protocol by the real QKD protocol in any 
application protocol.   

• What formal general security definition (for the 
application and the subprotocols) is suggested 
by this intuition? 



Alice Bob
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Program i Program jInternal 
communication

InputOutput InputOutput

A quantum protocol  is a collection of circuits regrouped in 
disjoint sets called programs together with channels for internal 
communication and for communication with the environment. 



The communication structure of a protocol determines two 
layers: the functional and the internal layers.   The functional
layer is defined by the relationship between the input and 
output registers of the protocol.   

The internal layer is defined by the details of the program 
(the circuits) and the internal communication in the protocol.  
It`s the means by which the functionality layer is realised.  



Circuit 2

Alice`s program

Its
Environment

Internal registers for 
communication with 
other programs (i.e., 
Bob`s program) in 
the same protocol

Inputs 
and 
outputs
registers



• Registers are sent through communication channels that
respect assumptions (e.g., private or not, authenticated or not, 
etc.) We consider that these channels and assumptions are 
part of the definition of the protocol.  

• The definition of the protocol also includes the access rule 
(e.g. how many participants can be corrupted).  

• Circuits are automatically activated when all the required 
registers are received.

• All internal channels (between the programs) pass through 
the adversary

• Every program runs at a different location.



Alice`s Dummy 
Program

Bob`s Dummy 
Program 

Alice Bob
Input Output Input Output

Ideal Internal 
Channels

They just
forward
the input
and the
output



A more secure ideal protocol provides a stronger (more 
secure) definition of security. The strongest definition will 
state that no party can be corrupted in the ideal protocol and
it will use ideal channels with guarantee of delivery, etc. The 
problem, of course, is to find protocols that achieve this level 
of security.   A trade off is neccessary.

Example:  the ideal internal channels offer no guarantee of 
delivery because the real channels can be jammed.   



An ideal protocol is simply a 
special case of a real protocol.

The functionality layer is defined by the relationship between the
inputs and the outputs of the dummy parties.  This relationship is
in turn determined by the internal layer which is the ideal 
functionality β and the communication between the dummy parties 
and β .  





Honest inputs
and outputs

The adversary A substitutes itself for the 
honest programs.  Moreover, all internal
communications in B pass through the 
adversary A.  

The ideal model has 
the same structure, 
but B is replaced by
β and A by S.

Contains only the 
non corrupted 
programs.

B A

Free
communication

Bit Z(B,A)

A ≠ Alice



The worst case real adversary (to challenge the simulator S) is the 
dummy adversary which simply follows any request from the 
environment.

This can be proven, but this will only be useful to provide an 
intuition behind our definition. A definition does not require a 
proof. 

The main point is that we can assume that the 
real adversary is part of the environment.  The 
real adversary disappears from the picture!



B

Z(B)

β S

Z(β,S)

Basic Idea

For all environment Z, there must exist a 
simulator S such that Z(B) ≈ Z(β,S)



For any two random binary variables Y, Y` let us write 

Y ≈e Y`      if      | Pr( Y = 0  )  - Pr( Y` = 0 )| ≤ e. . 
Let PP be the set of all polynomial functions. 

Definition. A protocol B for an ideal functionality β is 
secure, if for any environment Z there exists a 
simulator S such that (∀ d ∈ P) P) (∃ n0 ∈ℵ ) (∀ n > n0)

Z(B) ≈e Z(β, S)
where e = 1/d(n).



The simulator S must have a polynomial complexity c ∈ P that 
depends only on B (i.e. not on Z or n0). Also, n0 can only depend on 
d and on the respective  polynomial complexity c, c` of S and Z (not
on their actual circuits).  The actual circuit of S can depend on n.  

For every c ∈ P, let T(c) be the set of programs of complexity c. 
Formally, the order for the quantifiers is:

(∃ c ∈ PP)(∀ c’ ∈ PP)(∀ d ∈ P) P) (∃ n0 ∈ℵ )(∀ n > n0)
(∀ Z ∈ T(c’))(∃ S ∈ T(c)) 

Z(B) ≈e Z(β, S)
where e = 1/d(n).  

About the Computational Setting



There are three steps in the proof. 

(1) Essentially, we must construct a simulator S(G(B)) for G(B) 
given the simulators S(G( β)) for G( β) and S(B) for B.

(2) We must show that the size of the simulator S(G(B)) is a 
polynome that depends only on the protocols G( β) and B.

(3) We must show that the lower bound n0 for n depends only on 
the polynome d (for the indistinguishability) and on the 
complexity of the circuits Z and S, not on the actual circuits.   



All the security properties of the protocol considered are 
encapsulated into the non distinguishability of a single 
bit returned by the environment.  For example, both 
privacy and uniformity are included in the case of QKD.

This approach can be used to define the security of any 
protocol and this is very powerful. 





B s.r. β ∧ G(β)  s.r. γ � G(B)  s.r. γ

γ S(G(B))

Recall that we want to prove

s.r.  = securely realises



The subcircuit G of the protocol G(B) is a part of 
the environment for B.  

Diagram 1 Diagram 2
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Diagram 3 Diagram 4
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β βγ

= S(G(B))

γ
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Are Uniformity and Privacy
enough for composability?
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Y = Eve`s optimal measurement outcome. 

Recall: Composability means there exists a simulator so 
that the ideal case is indistinguishable from the real case.



we obtain that 

key k  with probability 2-m (ideal) and 
key k with probability p(k | jam = 0) (near ideal)

are indistinguishable.  

So, it is enough to show that the real QKD protocol and a 
near Ideal QKD protocol which outputs k with probability
p(k | jam = 0) are indistinguishable.

Recall: Composability means there exists a simulator so 
that the ideal case is indistinguishable from the real case.



Alice Bob

k k ρ

Modified
Ideal QKD

Jam

The simulator runs the real QKD protocol while 
interacting with the environment.  This produces ρ.  
If the simulated key k* = fail, it sets jam = 1. In all 
cases,  it throws away the simulated k*.  

Alice Bob
Authentication
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We can show that 

αρρ m
acc
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where  Iacc(E| Jam) = max I(k;Y| Jam) and m is the 
length of the key.  (We omit the proof here).

The large factor 2m looks bad, but actually it is not so 
bad because the bound α on Iacc respects 

where n can be taken arbitrarily large, independently 
of m. 

nξα −≤ 2



• Mayers and Shor-Preskill security proofs can be 
adapted for composability without the large factor 2m.

• We do not know if B92 is composable without this 
large factor (since there is no security proof). 



• The composability of QKD is useful in application 
protocols that also respect this universal security 
definition. Multiparty secure computation and other 
tasks respect this universal security definition. (Not 
yet formally proven). 

• The large factor 2m might not be so bad, but still it 
makes a difference.  We have no reason to believe 
that it is neccessary! 

• Obtain a more flexible « universal » security 
definition because the one we have now is not so 
easy to achieve. We already have one proposal. 



Simulator that interacts with an ideal protocol for specific 
protocols (1985).  

Universal composability came after Goldreich, Micali, 
Wigderson in 1987. 

The idea of using the environment with an output bit as a 
distinguisher was introduced in 2000 (Canetti). This takes
care of concurrent composability.   

Proved for quantum protocols in 2002 (Ben-Or, Mayers).  
At the same time, a modified and simpler (but perhaps 
equivalent) model was proposed which allowed to extend 
the result.  This is the model used here. 



The simulator for ΠF and ρ have polynomial size c(ΠF) and c(ρ), 
respectively.   The simulator for Πρ which we will construct 
consists of a constant size manager that forwards the requests from 
the environment to one of these two simulators.  So, it has
polynomial size c ∈ PP.  

Consider any c``, d ∈ PP.  We pick for k0 the maximum of k0(ΠF, c, 
c`` + c(ρ), 2d) and k0(ρ, c, c`` +|Π|, 2d). 

Let k > k0 and Z ∈ T(c``(k)).  We need to find S ∈ T(c(k)) such that
Z(Πρ) ≈d(k) Z(GS).  We have |Z| = c`` and |Π|  = c. So |Z + Π| = c`` + 
|Π| is a polynome.  The definition of k0 and the security of ρ gives us  
S(ρ) such that

[Z + Π](ρ) ≈1/(2d(k)) [Z + Π](FS(ρ))                                     (1)



We also have | Z + S(ρ) | =  c`` + c(ρ). So the security of ΠF and 
the definition of k0 guarantees the existence of a simulator S(ΠF) 
such that

[Z + S(ρ) ](ΠF) ≈1/(2d(k)) [Z + S(ρ) ]( GS(ΠF) ) (2) 

The environment Z (i.e., the dummy adversary Ã) does not see 
the (honest) I/O communication between Π and ρ.  It sees Π and
ρ as if they were two independent protocols.  Note that the 
simulator S(ΠF) provides the I/O interface to F that is needed by
S(ρ).  This is possible because S(ΠF) corrupts the dummy
parties of F as requested by the environment Z and allowed by 
the access rule of F. So,  the simulator S(ρ) interacts with S(ΠF) 
to access F.


