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Error-Correcting Codes

e Encoding C :{0,1}" — {0,1}™, m >n

e Even if C(x) is corrupted in §m positions,
we can still recover the whole z

e We can achieve this with m = O(n),
linear-time encoding and decoding.
O(1) time per bit!

e Disadvantage: if you only want one bit z;,
you still need to decode the whole C(x)



Locally Decodable Codes

e Recover x; with high probability, looking
only at a few positions in the codeword

e C:{0,1}" - {0,1}™" is a
(g, 9,e)-locally decodable code (LDC)
if there exists a randomized decoder A
such that for every y € {0,1}™ and ¢ € [n]

1. AY(i) makes < ¢ queries to bits of y
(non-adaptively)

2. d(y,C(x)) <dm = Pr[AY(i) =x;] > 1/2+¢

o | QODCs: classical code, quantum queries



Example: Hadamard Code

o Define C(z); =j-x mod 2
for all j € {0,1}", so m = 2"

e Decode: pick random j € {0,1}",
query 7 and j @ e;, output y; ® yjge,

e Works perfectly if y = C(x) (no noise)
e J-corruption hits C(z); or C(x),ge;

with probability < 24, so

PrlAY(i) = ;] > 1 — 26



What Was Known About LDCs

Main question: tradeoff between g and m

e Upper bounds:
qg=m = m < 0O(n) (standard ECCQC)
g = (logn)?2 = m < poly(n) (Babai et al)
constant ¢ = m < 29 (from PIR)

e Lower bounds:
Katz-Trevisan 00:

g=1 = LDCs don’t exist
14+-1_

g>1 = m>n = ¢1

GKST 02:

q = 2,linear C = m > 2", c=d¢/8

e Our result:

g=2 = m>2°" also for non-linear LDCs



Our Proof Uses Quantum!

e Step 1:

2-query LDCs can be decoded
with 1 quantum query:

(2,8,6)-LDC is (1,6,4¢/7)-LQDC

(example: Hadamard code)

e Step 2:

(1,8,¢)-LQDC needs length m > 2¢7,

because it implies a random access code



Step 1: From 2-LDC to 1-LQDC

Compute Boolean function f(aq1,a>) with 1 quan-
tum query and success probability exactly 11/14:

1. Query |¢) = [0) + (~1)91[1) 4 (~1)42|2)

2. Measure in 4-element basis |¢y,1,) =
0) + (=1)"1[1) + (=1)%2(2) + (~1)"12(3)

3. Pr[biby = a1as] = [(@|vaya,)|? = 3/4
4. bi1bo + truth table of f = output

For classical 2-query decoder with success prob-
ability p = 1/2 + ¢, one quantum query gives
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Step 2: Lower Bound for 1-LQDC

e Quantum decoder predicts x; by doing
m
POVM on query state ) (—1)C($)jaj|j)
J=1

e T his can tolerate up to ém phase-errors

e Small amplitudes A; = {j : a; < 1/vdm}
misses at most dm indices

e Given [4;(z)) = Y (—1)C($)jaj|j>,
JEA;
we can predict x; with good bias =~ ¢



Step 2: get |A;(x)) from uniform state

e Predict z; from [U(z)) = > (—1)C($)j|j):
=1

1. Measure |U(z)) with POVM M*M;,

I — M*M;, where M; =Vdm > aj|j){j|
JEA;

2. With prob ~ d: M; : |U(x)) — |A;(x)),
then we can predict x; with bias =~ ¢

With prob ~ 1 — ¢: output fair coin flip

3. This gives x; with prob p~ 1/2 4 é¢

e |U(x)) is a random access code for z!

logm > ( - H(p))n
#qubits of U(z) RAC bound (Nayak 99)




LQDCs are shorter than LDCs

e Best known 2¢-query LDCs (BIKR 02)
output the XOR of the 2q bits

e Can do this with g quantum queries!

Queries | Length of LDC | Length of LQDC
g=1 don't exist 20(n)
q = > 2@(n) 2n3/10
g =3 2n1/2 2,,11/7
g=4 2n3/10 2,n1/11




Private Information Retrieval

e User retrieves x; with probability 1/2 4 ¢
from n-bit database x that is replicated
over k non-communicating servers
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e Privacy: server learns nothing about z

e How much communication is needed?

— 1-server PIR needs Q(n) bits

— 2-server PIR with O(nl/3) bits (CGKS)



Lower Bound for Classical Binary PIR

e Binary PIR: servers send back only 1 bit

e Can reduce 2 binary classical servers to
1 quantum server (treat servers as queries)

e 2(n) lower bound for 1-server quantum PIR
=
Q(n) lower bound for 2-server binary PIR

e Previously known only for linear PIR (GKST)

e Recent classical proof if e =1/2 (BFG)



Upper Bound for Quantum PIR

e Best known 2k-server binary PIRs
(BIKR 02) output XOR of the 2k bits

e Can do this with k quantum servers

e Better than best known k-server PIRS!

Servers | PIR complexity | QPIR complexity
k=1 n n

L =2 n1/3 n3/10

L — 3 n1/5.25 nl/7

L — 4 n1/7.87 nl/11




Summary

e Locally decodable codes:

— Exponential lower bound for 2-query LDCs
via a quantum proof

— g-query LQDCs are shorter than LDCs

e Private information retrieval:
— Q(n) lower bound for 2-server binary PIR

— Upper bound O(n3/19) for 2-server QPIR



