Quantum Computing, Locally Decodable Codes, and

Private Information Retrieval

Iordanis Kerenidis (UC Berkeley)

Ronald de Wolf (CWI Amsterdam)

Error-Correcting Codes

- Encoding ${\pmb C}: \{0,1\}^n \to \{0,1\}^m$, $m \ge n$
- Even if C(x) is corrupted in δm positions, we can still recover the whole x
- We can achieve this with m = O(n), linear-time encoding and decoding.
 O(1) time per bit!
- Disadvantage: if you only want one bit x_i , you still need to decode the whole C(x)

Locally Decodable Codes

- Recover x_i with high probability, looking only at a few positions in the codeword
- $C: \{0,1\}^n \to \{0,1\}^m$ is a (q, δ, ε) -locally decodable code (LDC) if there exists a randomized decoder Asuch that for every $y \in \{0,1\}^m$ and $i \in [n]$
 - 1. $A^{y}(i)$ makes $\leq q$ queries to bits of y (non-adaptively)
 - 2. $d(y, C(x)) \leq \delta m \Rightarrow \Pr[A^y(i) = x_i] \geq 1/2 + \varepsilon$
- LQDCs: classical code, quantum queries

Example: Hadamard Code

- Define $C(x)_j = j \cdot x \mod 2$ for all $j \in \{0, 1\}^n$, so $m = 2^n$
- Decode: pick random $j \in \{0,1\}^n$, query j and $j \oplus e_i$, output $y_j \oplus y_{j \oplus e_i}$
- Works perfectly if y = C(x) (no noise)
- δ -corruption hits $C(x)_j$ or $C(x)_{j\oplus e_i}$ with probability $\leq 2\delta$, so

$$\Pr[A^y(i) = x_i] \ge 1 - 2\delta$$

What Was Known About LDCs

Main question: tradeoff between \boldsymbol{q} and \boldsymbol{m}

• Upper bounds:

$$q = m \Rightarrow m \leq O(n)$$
 (standard ECC)
 $q = (\log n)^2 \Rightarrow m \leq poly(n)$ (Babai et al)
constant $q \Rightarrow m \leq 2^{n^{c(q)}}$ (from PIR)

• Lower bounds:

Katz-Trevisan 00: q = 1 \Rightarrow LDCs don't exist q > 1 \Rightarrow $m \ge n^{1 + \frac{1}{q-1}}$ GKST 02: q = 2, linear C \Rightarrow $m \ge 2^{cn}, c = \delta \varepsilon/8$

• Our result:

 $q = 2 \Rightarrow m \ge 2^{c'n}$ also for non-linear LDCs

Our Proof Uses Quantum!

- Step 1:
 - 2-query LDCs can be decoded with 1 quantum query:
 - $(2, \delta, \varepsilon)$ -LDC is $(1, \delta, 4\varepsilon/7)$ -LQDC
 - (example: Hadamard code)
- Step 2:

 $(1,\delta,\varepsilon)$ -LQDC needs length $m\geq 2^{c'n}$,

because it implies a random access code

Step 1: From 2-LDC to 1-LQDC

Compute Boolean function $f(a_1, a_2)$ with 1 quantum query and success probability exactly 11/14:

- 1. Query $|\phi\rangle = |0\rangle + (-1)^{a_1}|1\rangle + (-1)^{a_2}|2\rangle$
- 2. Measure in 4-element basis $|\psi_{b_1b_2}\rangle =$ $|0\rangle + (-1)^{b_1}|1\rangle + (-1)^{b_2}|2\rangle + (-1)^{b_1+b_2}|3\rangle$

3.
$$\Pr[b_1b_2 = a_1a_2] = |\langle \phi | \psi_{a_1a_2} \rangle|^2 = 3/4$$

4. b_1b_2 + truth table of $f \Rightarrow$ output

For classical 2-query decoder with success probability $p = 1/2 + \varepsilon$, one quantum query gives

$$\frac{11}{14}p + \frac{3}{14}(1-p) = \frac{1}{2} + \frac{4\varepsilon}{7}$$

Step 2: Lower Bound for 1-LQDC

- Quantum decoder predicts x_i by doing POVM on query state $\sum_{j=1}^m (-1)^{C(x)_j} \alpha_j |j\rangle$
- This can tolerate up to δm phase-errors
- Small amplitudes $A_i = \{j : \alpha_j \leq 1/\sqrt{\delta m}\}$ misses at most δm indices
- Given $|A_i(x)\rangle = \sum_{j \in A_i} (-1)^{C(x)_j} \alpha_j |j\rangle$, we can predict x_i with good bias $\approx \varepsilon$

Step 2: get $|A_i(x)\rangle$ from uniform state

- Predict x_i from $|U(x)\rangle = \sum_{j=1}^m (-1)^{C(x)_j} |j\rangle$:
 - 1. Measure $|U(x)\rangle$ with POVM $M_i^*M_i$, $I - M_i^*M_i$, where $M_i = \sqrt{\delta m} \sum_{j \in A_i} \alpha_j |j\rangle \langle j|$
 - 2. With prob $\approx \delta$: $M_i : |U(x)\rangle \mapsto |A_i(x)\rangle$, then we can predict x_i with bias $\approx \varepsilon$ With prob $\approx 1 - \delta$: output fair coin flip
 - 3. This gives x_i with prob $p \approx 1/2 + \delta \varepsilon$
- $|U(x)\rangle$ is a random access code for x!

 $\underbrace{\log m}_{\text{#qubits of } U(x)} \geq \underbrace{(1 - H(p))n}_{\text{RAC bound (Nayak 99)}}$

LQDCs are shorter than LDCs

- Best known 2q-query LDCs (BIKR 02) output the XOR of the 2q bits
- Can do this with q quantum queries!

Queries	Length of LDC	Length of LQDC
q = 1	don't exist	$2^{\Theta(n)}$
q = 2	$2^{\Theta(n)}$	$2^{n^{3/10}}$
q = 3	$2^{n^{1/2}}$	$2^{n^{1/7}}$
q = 4	$2^{n^{3/10}}$	$2^{n^{1/11}}$

Private Information Retrieval

• User retrieves x_i with probability $1/2 + \varepsilon$ from *n*-bit database x that is replicated over k non-communicating servers

- **Privacy**: server learns nothing about *i*
- How much communication is needed?
 - 1-server PIR needs $\Omega(n)$ bits
 - 2-server PIR with $O(n^{1/3})$ bits (CGKS)

Lower Bound for Classical Binary PIR

- Binary PIR: servers send back only 1 bit
- Can reduce 2 binary classical servers to 1 quantum server (treat servers as queries)
- Ω(n) lower bound for 1-server quantum PIR
 ⇒
 Ω(n) lower bound for 2-server binary PIR
- Previously known only for *linear* PIR (GKST)
- Recent classical proof if $\varepsilon = 1/2$ (BFG)

Upper Bound for Quantum PIR

- Best known 2k-server binary PIRs
 (BIKR 02) output XOR of the 2k bits
- Can do this with k quantum servers
- Better than best known *k*-server PIRs!

Servers	PIR complexity	QPIR complexity
k = 1	n	n
k = 2	$n^{1/3}$	n ^{3/10}
k = 3	$n^{1/5.25}$	$n^{1/7}$
k = 4	$n^{1/7.87}$	$n^{1/11}$

Summary

- Locally decodable codes:
 - Exponential lower bound for 2-query LDCs
 via a quantum proof
 - q-query LQDCs are shorter than LDCs
- Private information retrieval:
 - $\Omega(n)$ lower bound for 2-server binary PIR
 - Upper bound $O(n^{3/10})$ for 2-server QPIR