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Overview

LOCC data hiding for From RSP to PQC to
guantum states data hiding

(quant-ph/0207147)
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Nonlocality without entanglement
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Quantum data hiding

GOAL: Charlie hides a bit from Alice and Bob, secure against LOCC
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RESULT: There exist bipartite n-qubit states hiding a bit with security 2-("1,

[DLT, 2001]



Hiding a qubit: First attempt

TASK: Hide an arbitrary quantum state ‘¢> = O" O> + ,8‘ 1>

<Zi‘Zj>:5ij
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Prepare superpositions of well hidden states?



Hiding a qubit: First attempt

TASK: Hide an arbitrary quantum state ‘¢> = O" O> + ,8‘ 1>
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PROBLEM: Data hiding with pure states is impossible!
(So much for superpositions.)

[WSHYV .2000]



2nd simplest idea

THE PLAN: Use classical hidden bits as key to randomize a qubit
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PROPERTIES: 1) @ can be recovered using quantum communication
2) Naive attacks fail (AB, to find key then rotate B,)

PROBLEM: Alice and Bob can attack AB,B,



Actually, not a problem

Any method to learn about ¢ by LOCC will provide a
method to defeat the original cbit hiding scheme.

Will argue the contrapositive:

Assume there 1s an LOCC operation L (with output on

Bob’s system alone) and two input states to the hiding
map E such that

L(E(g,)) % L(E(g,))



Minor algebra
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CLAIM: Not all L; can be the same TPCP map. If they were, then
by linearity:

L(E(¢)):%g Lo(0:p0,) = Lo(%gai¢aij = Lo(% I)

This says that L would never reveal any information about
the input state, violating the hypothesis that L defeats the
gubit hiding scheme.



Defeating the cbit hiding

Conclusion from previous slide: there is a k such that L ZL,

p_ (D B,B;
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Lo, o oo )=(L, 01, o)

The attack: 1) Bob prepares a local maximally entangled state on B,B,
2) Alice and Bob apply L to AB,B,

3) Bob performs a measurement on B,B,

By Choi, there is a measurement that can partially distinguish Lyand L,



Imperfect hiding

Wish to limit distinguishability through LOCC:

HL(E(¢0)) B L(E(¢1))H1 <&

For all input states and attacks.

If the original 2n bit hiding scheme has security o,
then £<2+1 4,

Not so bad: security of classical hiding schemes appears
to improve exponentially with number of qubits used.



Multipartite cbit hiding
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* With LOCC alone the five parties cannot learn i

» Authorized sets can recover the secret using guantum communication

All monotonic access structures are possible: [Eggeling, Werner 2002]



Multipartite qubit hiding
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o With LOCC alone the five parties cannot learn @

This authorization structure

IS Impossible due to no-cloning!

» Authorized sets can recover the secret using quantum communication



Multipartite qubit hiding

o With LOCC alone the five parties cannot learn @

» Authorized sets can recover the secret using quantum communication

Problem for generalizing construction: B must be in all authorized sets




Quantum secret sharing

e e.g. ((2,3)) threshold scheme
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Secure against guantum communication in unauthorized sets but
secret can be recovered by quantum communication in authorized sets.

v'All monotonic threshold schemes not violating no-cloning [CGL,1999]

v'All monotonic schemes not violating no-cloning [G,2000]



Hiding distributed
guantum data

: : : e Logical Pauli operators
Multipartite cbit

hiding states C(¢)
E_ B

E(¢)=4> pl DaiC(g)o’

Resulting state provides strengthening of quantum secret sharing:

Mo

1l
(@]

e Secure against classical communication between all parties
e Secure against guantum communication in unauthorized sets
« Secret can be recovered only by quantum communication in authorized sets.

v'All monotonic schemes not violating no-cloning



Fig. 1. Glimpse of a master magician’s workshop



Remote state preparation.
Non-oblivious teleportation

A circuit that needs no introduction;
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Remote state preparation.
Non-oblivious teleportation
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Result discussed Sunday: probabilistic, exact RSP of high-dimensional
states is possible using 1 ebit + 1 cbit + 1 rbit per qubit.



From RSP to randomization

Circuit for teleportation:

) B
A qubits i: 21 bits

oo/ I 19

1
Before receiving i, Bob knows nothing: EZ Ui¢UiD :E |
i

(“Private quantum channel”, “Quantum one-time pad”, etc.)



Private quantum channels

I - N ~ NOE
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Eavesdropper learns nothing.

[BR,AMTW 2000]



From RSP to randomization

Circuit for teleportation:

) B
A qubits i: 21 bits

oo/ I 19

1
Before receiving i, Bob knows nothing: EZ Ui¢UiD :E |
i

(“Private quantum channel”, “Quantum one-time pad”, etc.)



From RSP to randomization

Circuit for remote state preparation:

9
4% nqubits i: n+o(n) bits

oy M 19

1 1
Before receiving I, Bob knows nothing: Sno(n) Z Ui¢UiD = E |
i

(“Private quantum channel”, “Quantum one-time pad”, etc.)
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On the meaning of

For any probability density P(¢) on states in C9 and €>0 there exists
a choice of unitaries {UJ}, s=1,...,S such that

[dP(g H ZU ¢UD

S—l

1

and
1
logS=logd +o{loglogd )+ |oc{?j

Compare to the perfect private quantum channel:

To achieve €=0 requires log M =2 log d.



Another version

There exists a choice of unitaries {U .}, p=1,...,P, s=1,...,S such

that for all states ¢ in Cd
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Can randomize every n-qubit state using 1 secret

random bit and 1 public random bit per qubit.



A stronger version of
randomization

pAB
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R is a good randomizer if it destroys all
correlations with the outside world:

(1 DR)p™ = p* 021

For separable inputs, this follows from previous formulation.
Not true for entangled inputs!



Rank argument

T:8(cY) - BlcOcY)
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Recall good randomizing map:

1
Randomizing condition: T(¢)=%I D%I

Act on half of a maximally entangled state:
(T L1 )(de) has rank around P - d

Fidelity with maximally mixed state small: F((T O1)®,, 2L |

d’ Pdd




Characterizing leftover
correlations

What does randomization map do to entangled inputs?

<

b A

* Charlie prepares maximally entangled state k then randomizes it.

* Bob performs a complete projective measurement.



Characterizing leftover
correlations

What does randomization map do to entangled inputs?

<

Separable state!  k info randomized

* Charlie prepares maximally entangled state k then randomizes it.

* Bob performs a complete projective measurement.

Conclusion: the randomizing map is secure against 1-way LOCC



(Highly optimistic) Conjecture

Can randomize every n-qubit state using 1 secret

random bit per qubit and no public random bits.

Given >0, there exists a choice of unitaries
{Ug}, s=1,...,S such that for all states ¢ in Cd
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logS=logd +o(|ogd)+|og(g—12j



Consequences

Universal remote state preparation with
only 1 ebit + 1 cbit per qubit

(No shared random bits necessary)
Weakly randomized maximally

entangled states indistinguishable from
maximally mixed states using LOCC

(Not just 1-way LOCC as sketched earlier)



Application to data hiding
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Consider ensemble of randomized states with V chosen using Haar measure
x=lodd’)- [aVS((Rv O 1))
> |og(d2)—|og|\/| Rank bound on entropy

=logd —o(logd) ~log|

So we can do coding to get about n hidden bits using nxn bipartite states




Glyph collection
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Competing visions

Faction 1

Destroying classical
correlations requires
only 1 rbit per qubit
Destroying quantum
correlations requires
2 rbits per qubit

Faction 2

Randomizing an
arbitrary pure
guantum state
requires 1 public rbit
and 1 secret rbit per
qubit



Summary

Described a method for hiding qubits
given one for hiding bits (construction
and proof not restricted to data hiding)

Outlined a connection between LOCC
data hiding, private quantum channels
and remote state preparation



