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Overview

� Act I

� LOCC data hiding for 
quantum states
(quant-ph/0207147)

� Act II

� From RSP to PQC to 
data hiding





Nonlocality without entanglement
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Quantum data hiding
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GOAL: Charlie hides a bit from Alice and Bob, secure against LOCC

[DLT, 2001]

RESULT: There exist bipartite n-qubit states hiding a bit with security 2-(n-1).
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Hiding a qubit: First attempt

TASK: Hide an arbitrary quantum state 10 βαϕ +=
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Prepare superpositions of well hidden states?



Hiding a qubit: First attempt
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TASK: Hide an arbitrary quantum state 10 βαϕ +=

10 ζβζα +

PROBLEM: Data hiding with pure states is impossible!
(So much for superpositions.)

[WSHV,2000]



2nd simplest idea

THE PLAN: Use classical hidden bits as key to randomize a qubit
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PROPERTIES: 1)     can be recovered using quantum communication
2) Naïve attacks fail (AB1 to find key then rotate B2)
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PROBLEM: Alice and Bob can attack AB1B2

( ) =ϕE



Actually, not a problem

Any method to learn about     by LOCC will provide a 
method to defeat the original cbit hiding scheme.

Will argue the contrapositive:

Assume there is an LOCC operation L (with output on
Bob’s system alone) and two input states to the hiding
map E such that
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Minor algebra
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CLAIM: Not all Li can be the same TPCP map. If they were, then
by linearity:
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This says that L would never reveal any information about
the input state, violating the hypothesis that L defeats the
qubit hiding scheme.



Defeating the cbit hiding 
Conclusion from previous slide: there is a k such that L0≠Lk
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The attack: 1) Bob prepares a local maximally entangled state on B2B3

2) Alice and Bob apply L to AB1B2
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3) Bob performs a measurement on B2B3

By Choi, there is a measurement that can partially distinguish L0 and Lk



Imperfect hiding

Wish to limit distinguishability through LOCC:
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For all input states and attacks.

If the original 2n bit hiding scheme has security δ, 
then ε <2n+1 δ.

Not so bad: security of classical hiding schemes appears
to improve exponentially with number of qubits used.



Multipartite cbit hiding
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• With LOCC alone the five parties cannot learn i

• Authorized sets can recover the secret using quantum communication

All monotonic access structures are possible: [Eggeling, Werner 2002]



Multipartite qubit hiding
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• With LOCC alone the five parties cannot learn 

• Authorized sets can recover the secret using quantum communication

This authorization structure
is impossible due to no-cloning!
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Multipartite qubit hiding
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• With LOCC alone the five parties cannot learn

• Authorized sets can recover the secret using quantum communication
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Problem for generalizing construction: B must be in all authorized sets



Quantum secret sharing
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Secure against quantum communication in unauthorized sets but
secret can be recovered by quantum communication in authorized sets.

�All monotonic threshold schemes not violating no-cloning [CGL,1999]

�All monotonic schemes not violating no-cloning [G,2000]

e.g. ((2,3)) threshold scheme



Hiding distributed 
quantum data
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Resulting state provides strengthening of quantum secret sharing:
• Secure against classical communication between all parties

• Secure against quantum communication in unauthorized sets
• Secret can be recovered only by quantum communication in authorized sets.

�All monotonic schemes not violating no-cloning
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Multipartite cbit
hiding states

Logical Pauli operators



Act II

Fig. 1: Glimpse of a master magician’s workshop



Remote state preparation:
Non-oblivious teleportation
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A circuit that needs no introduction:



Remote state preparation:
Non-oblivious teleportation
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Result discussed Sunday: probabilistic, exact RSP of high-dimensional
states is possible using 1 ebit + 1 cbit + 1 rbit per qubit. 



From RSP to randomization
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Circuit for teleportation:

n qubits i: 2n bits
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(“Private quantum channel”, “Quantum one-time pad”, etc.)



Private quantum channels
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Eavesdropper learns nothing.

[BR,AMTW 2000]



From RSP to randomization
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Circuit for teleportation:

n qubits i: 2n bits

IUU nii
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(“Private quantum channel”, “Quantum one-time pad”, etc.)



From RSP to randomization
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Circuit for remote state preparation: 

n qubits i: n+o(n) bits

IUU nii
i

non 2
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+ � ϕBefore receiving i, Bob knows nothing:

(“Private quantum channel”, “Quantum one-time pad”, etc.)
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On the meaning of “    “≈
For any probability density P(ϕ) on states in Cd and ε>0 there exists
a choice of  unitaries {Us}, s=1,…,S such that
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Compare to the perfect private quantum channel: 
To achieve ε=0 requires log M = 2 log d.



Another version

There exists a choice of unitaries {Ups}, p=1,…,P, s=1,…,S such 
that for all states ϕ in Cd
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Can randomize every n-qubit state using 1 secret
random bit and 1 public random bit per qubit.



A stronger version of 
randomization

ABρ

R is a good randomizer if it destroys all 
correlations with the outside world:
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For separable inputs, this follows from previous formulation.
Not true for entangled inputs!



Rank argument
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Recall good randomizing map:

Randomizing condition: ( ) I
d
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Act on half of a maximally entangled state:
( )( )dIT Φ⊗ has rank around P · d

Fidelity with maximally mixed state small: ( )( ) dPddd IITF 11, ≤Φ⊗ ~



Characterizing leftover 
correlations

What does randomization map do to entangled inputs?
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•Charlie prepares maximally entangled state k then randomizes it.
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•Bob performs a complete projective measurement.



Characterizing leftover 
correlations

What does randomization map do to entangled inputs?

R

Φ

•Charlie prepares maximally entangled state k then randomizes it.

kσk

M

•Bob performs a complete projective measurement.

Separable state! k info randomized

Conclusion: the randomizing map is secure against 1-way LOCC



(Highly optimistic) Conjecture

Given ε>0, there exists a choice of unitaries 
{Us}, s=1,…,S such that for all states ϕ in Cd
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Can randomize every n-qubit state using 1 secret
random bit per qubit and no public random bits.



Consequences

� Universal remote state preparation with 
only 1 ebit + 1 cbit per qubit 
� (No shared random bits necessary)

� Weakly randomized maximally 
entangled states indistinguishable from 
maximally mixed states using LOCC
� (Not just 1-way LOCC as sketched earlier)



Application to data hiding
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Consider ensemble of randomized states with V chosen using Haar measure
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So we can do coding to get about n hidden bits using nxn bipartite states!

Rank bound on entropy



Glyph collection

i

ϕ

ϕ

ϕM

s
sU *

sUϕ ϕ



Competing visions

� Faction 1
� Destroying classical 

correlations requires 
only 1 rbit per qubit

� Destroying quantum 
correlations requires 
2 rbits per qubit

� Faction 2
� Randomizing an 

arbitrary pure 
quantum state 
requires 1 public rbit 
and 1 secret rbit per 
qubit



Summary

� Described a method for hiding qubits 
given one for hiding bits (construction 
and proof not restricted to data hiding)

� Outlined a connection between LOCC 
data hiding, private quantum channels 
and remote state preparation


