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• Multiple capacities of quantum channels: C,Q…

• Trying to simplifying things with free resources:
– Assisted capacities: Q2, CE

• Entanglement assisted cap.  CE as the capacity.

• Classical Reverse Shannon Theorem

• Towards a Quantum Reverse Shannon Theorem
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Unitary representation.

Kraus 
representation.

Input usually viewed as entangled with a reference system R

Equal entropy

(Discrete Memoryless) Quantum Channel



Q   plain quantum capacity = qubits faithfully trasmitted per channel use, 
       via quantum error correcting codes

C   plain classical capacity = bits faithfully trasmitted per channel use 

Q2   classically assisted quantum capacity,  i.e. qubit capacity in the 
        presence of unlimited 2-way classical communication, (e.g. using 
        entanglement distillation and teleportation)

CE     entanglement assisted classical capacity i.e. bit capacity in the 
         presence of unlimited prior entanglement between sender and
         receiver.

Multiple Capacities of Quantum Channels

Bob

AliceAlice
Noisy quantum channel



Q    ≤ Q2 ≤ C     ≤ CE   =  2QE

conjectured

by definition

Inequalities among major capacities

All inequalities may be = or < depending on channel

by teleportation
and superdense
coding
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Erasure Probability

Capacities of Quantum Erasure Channel

Quantum Erasure Channel

input qubit sometimes  los t 

’ C1



C.H. Bennett Feb. 2002
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Equal entropy

Entropic quantities related to channel capacities.

C =? Holevo capacity =  max   S(N(ρ)) −Σpi S(N(ρi))

Q = Coherent Information =  lim max   S(N(ρ)) −S(E(ρ))

CE = Quantum Mutual Info. = max  S(ρ) + S(N(ρ)) −S(E(ρ))

Q2  ≈ Distillable entanglement = ??

{pi ,ρi}

n→∞ ρ

ρ

Shor 
’02

max D(I⊗N(Φρ)) = ?
ρ

(LOCC-distillable entanglement D has no simple expression,  may be nonconvex)



Robert Owen, Charles Fourier, Edward Bellamy:
Free goods & services will make everything better.

Haight-Ashbury, Timothy Leary:
Free LSD will make everything better

(Aram Harrow, ITP2001 poster session)
Will  Free Entanglement change the world? 

At least it simplifies the theory of quantum interactions & channels.

Does Free Stuff make the world better?

(Gutenberg,  FOIA,  the Internet,  . . . LOCC )
Free Classical Communication

Fourier*, Emma Goldman…Haight-Ashbury
Free Love will make everything better

*same Fourier,   
(no relation 
to Fourier 
transform)



N N

Free classical communication gives
Q2, the classically assisted quantum 
capacity, e.g. by entanglement sharing, 
distillation, and teleportation

N

Alice

Bob



N N

Alice

Bob

Free entanglement gives CE , the entanglement-
assisted classical capacity.

For a noiseless channel,  CE = 2C  by superdense coding. 
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Entanglement-Assisted capacity CE of a quantum channel N is equal to 
the maximum, over channel inputs ρ, of the input (von Neumann) entropy 
plus the output entropy minus their “joint” entropy (more precisely the joint 
entropy of the output and a reference system entangled with the late input)
(BSST 0106052, Holevo 0106075).  

Thus, in retrospect, entanglement-assisted capacity is the natural quantum 
generalization of the classical capacity of a classical channel.

Simplification:  CE = 2QE for all channels, by teleportation & superdense 
coding.

CE (N) = maxρ S(ρ)  + S(N(ρ)) − S(N⊗I(Φρ))

(entangled 
purification 
of  ρ)
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≈N ⊗m(ξ1⊗ξ2...⊗ξm)

CE(N))

The complicated theory of quantum channel capacity would be greatly
simplified if the Quantum Reverse Shannon Theorem (QRST) were
true: any quantum channel can be asymptotically simulated by prior 
entanglement and an amount of classical communication equal to 
its entanglement assisted capacity.  Then, in a world full of entanglement, 
all quatum channels would be qualitatively equivalent, and quantitatively
could be characterized by a single parameter. 

≈mCE(N) 
classical bits)

ξ1⊗ξ2...⊗ξm

all quantum

Ψ
(Ψ )



A
B

Φρ
}

Output of simulation, including reference system, 
should have high fidelity with respect to 
(N⊗I) ⊗m (Φρ), the output on the same input of  m
copies of the channel being simulated.

More generally, we should demand high fidelity on
entangled purifications of a mixed state input ρ

m CE(N)
bits



The QRST is known to hold for all (quantum discrete 
memoryless) channels when their inputs are drawn 
from a fixed distribution ρ.  This is the quantum 
analog of a classical IID source (Peter’s proof).  

For many channels, it is known to hold also for 
arbitrary sources even if the inputs are non-IID and 
allowed to be entangled across multiple instances of 
the quantum channel being simulated. 

The ability to properly handle non-IID sources is 
important because, for a channel simulation to be 
considered faithful, it ought to accurately simulate 
what the channel would do even on atypical inputs 
which a malicious adversary might send to expose the 
weaknesses of the simulation. 



Kinds of sources:

Tensor Power (analogous to classical IID):  ρ = ρ⊗m

Tensor Product:    ρ = ρ1⊗ ρ2⊗ ρ3⊗...

with each factor in   Η in

(Arbitrary pure:  ψ = a general pure state in  Η ⊗m )

Most general:  any pure state  Ψ in

in

Η ⊗m ⊗Η ⊗m
inin

m channel inputs
Purifying 
reference 
system

(worst an 
adversary 
could send)



Bob

Bob

Alice

Classical Shannon Theorem:  
A noisy channel can  simulate a noiseless channel 

=

Alice

=

Homer Simpson's Reverse Shanon's Theorem:  
A noiseless channel can simulate a noisy channel.

Classical Reverse Shannon Theorem (0106052)



Bob

Alice =

Bob

Alice =
Common
Random
Source

A Better Reverse Shannon Theorem (quant-ph/0106052) 
In the presence of shared random information between sender and receiver,
a noiseless channel can asymptotically simulate a noisy one of equal capacity.

Therefore, in the presence of shared random information,
all classical noisy channels are asymptotically equivalent. 



Alice receives
input string x 

Range of  d values for which SR  
typically includes at least one   
member  y'  at distance  d  from x.

0 n
Distribution of Hamming distances  d=|x-y|
induced by noisy channel.

Next she simulates the 
channel locally to get a
provisional output y

Then she picks  y'  in SR 
at same distance from x 
as y was, and tells Bob 
its index using n(C+δ) bits.

Simulation Method: Alice and Bob first preagree on a sparse 
set SR of 2n(C+δ) n-bit strings, using their shared random info R.



Bob

Alice

Common
Random
Source

In the large  m limit,  sending m bits through the noisy channel

can be simulated by sending about   mC noiseless “intrinsic”
bits, which Alice chooses with the help of the input,

and about  m(1-C) “extrinsic” random bits, which 
have nothing to do with the channel input, and so can 
be preagreed before Alice receives the input.

intrinsic

extrinsic



Measurement Compression

Given a density matrix  ρ and a POVM a = {aj}, define the one-shot output 
probabilities λj=Tr ρaj., and the square root ensemble ρj = (√ρ) aj (√ρ) / λj
realizing ρ. Then for any tolerance ε>0, there exists a block size l and a 
POVM  B, which is a good approximation to A=a⊗l,  and where B can be 
expressed as a convex combination  B=Σν xνBν of constituent POVMs  Bν each 
having at most M outcomes, where  log M ≈ l (S(ρ) - Σj λj S(ρj) )  is the Holevo 
information of the square root ensemble.  The approximation is good in the 
sense that for any entangled purification Φ of ρ⊗l,  
F((A⊗Ι ) Φ , (B⊗Ι ) Φ ) > 1- ε.    

On any tensor power source ρ, the POVM  a,  regarded as  QC 
channel, can be asymptotically simulated by shared randomness 
and an amount of forward classical communication approaching 
the quantum mutual information of   a   on  ρ.

QMI (a,ρ)   ≡ S(ρ)  + S(a(ρ))  − S (a⊗I(Φρ)).

S(a(ρ)) + Σj λj S(ρj)

=

QRST for
QC channels 
on known 
IID sources



Sketch of Shor’s proof of QRST for tensor power sources, using 
Winter’s compression theorem. Alice’s wants to simulate a general 
noisy channel N, using shared entanglement and as little classical 
communication to Bob as possible.  Let N  be defined by the Kraus 
operators {Nk : k=1…δ} so on input state ρ the channel output is 
Σk Nk ρ Nk

† .  Let Φin and Φout denote projectors onto maximally 
entangled states sized to the input and output dimensions of N. Let 
Uj be  dout dimensional generalized Pauli matrices.

Generalized Teleportation:  Alice performs a POVM with elements 
(I⊗ U*

j N*
k) Φin (I⊗ NT

k UT
j) on the input and her half of a specimen 

of Φout, after which she tells Bob only j, the index of which Pauli she 
performed.  He undoes the Pauli, and is left with N (ρ).  Τhis uses 2 
log dout bits of classical communication.

Measurement compression: For large block size m, Alice and Bob 
approximate this POVM by another with an intrinsic cost of  
m (QMI (N,ρ)) + o(m)



ξ

N(ξ)

CE(N))Winterized
Generalized
Bell Meas- 
urement

Uk
T

Entanglement 
for Teleportation

Shared Randomness
for Winterization (can
be created using more
entanglement)

N
Φρ⊗m 

≈ (I⊗N )⊗m (Φρ⊗m)

m QMI (N,ρ)

Overall picture



This establishes QRST for a general channel on known IID source.

For a general channel on an unknown IID source, use gentle tomography 
on a large block of inputs to estimate the source, then proceed as with a 
known IID source.

For a CQ channel on an arbitrary source, Alice performs the initial C part 
of the channel on a large block of m inputs and makes a copy of the 
results.  These results will be unentangled between channel instances, but 
may not be IID.  Using o(m) bits, Alice tells Bob the frequency 
distribution (type class) of the measured results and they then simulate 
the full CQ channel on this type class. (Alternatively, this may be viewed 
as remote state preparation of mixed states which can be done at the cost 
of the Holevo information of the ensemble, which equals the QMI.)

For a Bell-diagonal channels on arbitrary sources, the noisy quantum 
channel is directly equivalent to teleportation through a noisy classical 
channel, which can be simulated using the classical reverse Shannon 
theorem.  



To extend QRST to an unknown tensor power source:
Use gentle tomography to estimate   ρ from a large number m of
copies of ρ without much disturbing the global state.

(“Tender measurement” from Keiji Matsumoto’s talk)

This may be viewed roughly as 
choosing a random mesh on the 
parameter space of  ρ coarse 
enough ( ∝ 1/√m ) so for any ρ,  
a measurement on ρm of which 
cell the average falls in almost 
always yields the same result. 
This measurement, when 
conducted coherently, will 
therefore scarcely disturb the 
global state.  



(sign at
Frankfurt 
Airport)

(almost) no
Information  =>

(almost) no 
disturbance



With gentle tomography, get an estimate of the average 
density matrix ρest and its quantum mutual information.

(Crudely speaking):  do compressed teleportation using a 
version of Winter’s theorem designed not for the source 

ρest
⊗m, but rather for the (non tensor power) source ρunion

corresponding to the union of all typical subspaces of 
density matrices in the same mesh cell as ρest .  



• This union has a dimension only subexponentially 
greater than the typical subspace of  ρ.

• Also we use the fact that the fidelity of measurement 
compression approaches 1 exponentially with increasing 
block size, for any forward communication rate R 
exceeding the QMI.  

Therefore, the cost of simulating the channel on an 
unknown IID source still asymptotically approaches the 
quantum mutual information of the channel on that 
source.



Each heavily 
occupied cell is coded 
approximately, as 
with unknown tensor 
power source

The few remaining points are then 
teleported exactly, without compressing.

Extension to a known tensor product source: divide parameter space into
cells of suitable size and observe where known tensor factors ρk fall.



≤ CE

ave. QMI

QMI

QMI

Bell
diagonal

≤ 2 log min{din ,dout}= QMI of 
collapsed source

General Source

ave. QMIave. QMIKnown tensor
product

QMIQMIUnknown 
tensor power

QMIQMIKnown 
tensor power

General ChannelClassical
or CQ

Channel

Source

Costs of entanglement assisted channel simulation

QMI  = quantum mutual information for the source/channel combination 



Open questions:

Prove QRST for most general source model,
or find counterexample (a source/channel 
combination requiring more than CE to simulate).

What other free resource, if any, will similarly 
simplify the theory of quantum communication in 
the absence of free entanglement?

• LOCC?  probably not
• PPT-preserving operations?
• separability-preserving operations?


