Action and Symmetries*

Pierre Cartier, Institut de Mathematiques de Jussieu,
175 rue du Chevaleret, F-75013 Paris

Cecile DeWitt-Morette, Department of Physics and Center for Relativity,
University of Texas , Austin, TX 78712

Abstract

Since 1942 classical action functionals are key building blocks of func-
tional integrals in physics. There exists another construction which starts
with the generators {X,} of the groups of transformations which exist on
the configuration space of the system. The generators {X,} serve as dy-
namical vector fields in Quantum Physics. Their use has been suggested by
a stochastic construction (1980) of solutions of Schroedinger equations on
riemannian manifolds. Given {X,} and possibly other vector fields playing
the role of external potentials we construct a functional integral solution of
a parabolic PDE which can be identified with the Schroedinger equation of
the system. Its semi-classical expansion yields the action function S of the
system. We give two examples.

*presented by C. DeWitt at the workshop “The Feynman Integral along
with related topics and applications” (MSRI Dec 9-12, 2002)



This Fall I have been teaching a graduate course at Sharif University of
Technology (Tehran) on functional integration. The lecture notes will serve
as a first draft of a book I am writing with Pierre Cartier under the title

Functional Integration
Action and Symmetries

The book consists of three parts

I Basics (completed)

I1 Tools from Geometry (on the drawing board)

IIT Tools from Analysis (next on the drawing board)
The table of contents is available upon request.

I am looking forward to the lectures and discussions of this workshop,
and their impact on this book.

Today, I shall approach functional integration not from the action func-
tional of a system, but from its symmetries. I shall construct the Schroedinger
equation of the system and characterize volume forms on function spaces.
This material will be included in Section II, Tools from Geometry.

1) A basic theorem
Let X be a space of L?! pointed paths z on 7" with values in a manifold N':

x: T — NP, T = (tg,ty) ()
z(ty) = Xo, in Q.M. t, =1tp,Xo = Xb;
le. r € PC,ND
el e = [ dtguai ("(6) < o (2)
T

Dynamical vector fields {X (o)}

Let {o(4)(r)}, «€{l,...,D} be D one-parameter groups of transforma-
tions on NP, and X(a) their generators, i.e.

d

%(Xo " I(a) (T’)) = X(a) (XO 9] () (3)

with d
Xy(x) = E(X <0y (1) =0 (4)



generically the vector fields X(,) do not commute,

[X(a), X)) # 0 (5)

So much for a classical system with configuration space (possibly a fibre
bundle) N” which admits a group of transformations {0(a)(r)} with gener-
ators {X(Q)}. It becomes a quantum system when the generators are used
to define a group of transformations on NP parametrized by a space P, RP
of pointed paths z on RP.
Explicitly,

dz (t,2) = Xy (2(t, 2)) dz"(t) (6)
Spaces of pointed paths are contractible, and eq.(6) defines a map from
P:P,RP — P,NP by zw—z
A path z is a continuous, real, vector valued function on 1" such that
z(t,) =0
and, for a given h,g,

Q.(2) i= / dt hopi ()35 (t) < oo (7)

When the generators do not commute, X is not a function of z(t) but a
functional of z, as well as a function of t. In general, one cannot solve (6)
explicitly, but one can prove that the solution can be written

z(t,2) = Xo - Z(t, z) (8)
where Y (¢, z) is an element of a group of transformations on ND:
XO-Z(t—}—t’,zxz') ZXO-Z(t,z)-Z(t’, 2 (9)

where z defined on (t,,t] is followed by z’ on (¢,1t'].
A functional integral on P,RP
0
Wt x4) : D, cexp(——0Q,(z o t,z 1
(o) [ Drguzenn(=LQu006- 02)  (10)

Here Dy g,z exp(—£Q.(2)) , s € {1,1} is the gaussian volume form defined
by
D50,z - exp(—on(z)) —2mi < 2z >:1= exp(—wsW,(Z")) (11)
s

The quadratic form (7) defines a differential operator D by
Qo(z) =< Dz, 2 >; (12)



the quadratic form W on the dual Rp of RP is
W,(") =< 2, Gz" > (13)

where (G is the unique Green function of D in the domain of integration
P,RP.
DG=1 |, GD=1 (14)

A basic theorem
The functional integral (10) is the solution of the parabolic equation

Y _ s pa
5 =h ﬁﬁx(a)ﬁx(m\ll (15)
U(t,,x) = ¢(x) forany x eN

where Lx is the Lie derivative with respect to the generator X of a group
of transformation.

2) An example: paths in non-cartesian coordinates
Equation (6) can be used for expressing non-cartesian differentials {dz“(¢)}
in terms of cartesian differentials {dz%(¢)}. In this case, z is not a functional
of z, but simply a function of z(t). Polar coordinates in R? are sufficient for
displaying the general construction of the relevant dynamical vector fields

{Xay Xy}
Let us abbreviate z%(t) to 2%, z1(t) to r, and z?(¢) to 8; it follows from

zl =rcos, 22 = prsin6,
that eq.(6) reads
dr = cos@-dz'4+sinf-dz? = XL.dz'+ X1 .dz?
(1) (2) (16)
sin 8 cos 8 .
dé = —szl + sz2 = X(Ql)le -+ )((22)03232
The dynamical vector fields are
Xy = COSH% — Si‘r’gi
L o
X =sinb7+ 555

According to eq.(15) the Schroedinger equation in polar coordinates for a
free particle is

ov S

- - 2 goB

ity P LX) LX) Y

S
— 2 zaf
= 0 XXV



2 2
i(a__}_la__i_lﬁ) i (18)
4x \dr?  r206%  ror

3) An example. Frame bundles over Riemannian manifolds

On a principal bundle, the dynamical vector fields {X(a)}, necessary for
the construction (10) of the solution W(¢,x,) of the parabolic eq. (15), are
readily obtained from connections. On a riemannian manifold, there exists
a unique metric connection! such that the torsion vanishes. Whether unique
or not, a connection defines the horizontal lift of a vector on the base space.
After trivialization of the frame bundle, a point p(t) is a pair: z(t) on the
base space and u(t) a frame on the typical fibre.

p(t) = ((t), u(D)).

The connection ¢ defines the horizontal lift of a vector @(t), namely

plt) = o(p(1)) - (1) (19)

A frame u(t) is a map from R into Tz(t)ND; let uw(t)™!: @ (t) = 3(t) € RP.
Eq (19) can be rewritten

o) = a(p(t) - u(t) o u()™ - (1) .
= 20y (p(1)) - 3° (1) (20)

The dynamical vectors {X(,)} generate the horizontal lifts of straight lines
through the origin of R”. Indeed. let z(,)(t) = 65 e(g) = €(a), then eq. (20)
reads p(a) (t) = X(,B)(p(a)(t))(sg = X(a)(p(oz)(t))

On the frame bundle of a riemannian manifold, eq. (6) reads
dp(t) = X(a)(p(£))2(t)
The construction from (6) to (15) gives a parabolic equation on the bun-
dle, its projection on the base space gives the parabolic expression with the
Laplace-Beltrami operator.

4) Generalizations
o It is straightforward to replace eq. (6) by dz(t,2) = X()((t,2)) dz® +
Y (z(t, z)) dt. Again, the solution of this equation can be written

x(t,z) = xo - Y. (L, 2);

!This unique connection is the usual riemannian connection, characterized by the van-
ishing of the covariant derivative of the metric tensor. For the definition of a metric
connection and the equivalence of the two characterizations, see for instance [Y. Choquet-
Bruhat p.381]




the group of transformations 3" parametrized by P, R” is now defined by
(D + 1) dynamical vector fields. Eq. (15) becomes

v _ 5 o »
s = Eh ﬁﬁx(Q)Lx(ﬁ)\I}-l-ﬁy\If

U(to,x) = ¢(x) for any x eN (21)

e The number of generators {X )} need not be equal to the dimension
D of the manifold NP. Eq. (6) reads then

dz?(t, z) = X (2 (t, 2)) dz' + Y(2(t, z)) dt (22)

5) Volume forms
Integral characterizations
Equation (11) gives an integral characterization of the gaussian volume form;

namely
/ D5,z exp(—EQo(z) — 271 < 2 2 >i= exp(—wsW, () (23)
Jp.ro " s

A volume form on spaces of Poisson paths can be defined by a similar equa-
tion. Indeed, a Poisson path 2 € X, is characterized by n jump-times
{t1,...,tn} and is interpreted as the sum &;, +d;, + ...+ d¢,,. The space XX
is the union of all X,,. Let a be a not necessarily real constant. Let dv(t)
be the dimensionless volume element on the time interval " = [t,, t3], with
T =1ty —1,.

dv(t) = adt , vol(Tl') = aT (24)
vol(X,) = a"T" /n! (25)
vol (XX) = exp(volll) (26)
We can even say
X =expdl

because addition of time intervals gives products of the corresponding spaces
X,
We can define the Fourier transform of a measure D, 72 on X by

/ Dyra-exp(i <z, f>)= exp/ do(t) expif(t) (27)
X T

Hint: <o, f>= f(t1)+ ...+ f(tn) (28)



If a is a real constant, the Poisson path can be described by a sequence of
waiting times T} between jumps:

Pr(ty < Ty < tp+dt) =a exp(—aty)dt (29)

For the case where the decay rate a varies with time see [See Kit Foong].

In general a volume form Dg z on a Banach space X can be defined
implicitly by an integral characterization,

/X Doy -O(z,2') = Z(z') (30)

A key feature of the integral representation of volume forms on function
spaces is the use of a translation invariant symbol, D, g, 2, D, 12, De 7z, as
the case may be.

Differential characterizations
As in the construction of integral characterizations, we begin with a finite
dimensional construction which suggests an infinite dimensional generaliza-
tion.
Let Ly be the Lie derivative with respect to a vector field X on NP, either
a (pseudo-) riemannian manifold (N, ) or a symplectic manifold (N2, Q),
the volume form w (w, or wq) satisfies the equation

Lyw=D(X) w (31)

where the volume form w is a top form (a D-dimensional form on NP) and
D(X) is a function on NP depending on the vector field X on NP.

Indeed,

Lywy = Divyg(X) -wy, DivgX := X2, (32)

and
Lxwo = Divg(X) -wq, DivgX = X7, (33)

If X on (ND. g) is a Killing vector field with respect to isometries, then
Lywy =0 (34)
If X on (N*V Q) is a hamiltonian vector field, then

Lywg =10 (35)

~1



Eqs. (34,35) suggest that given the dynamical vector fields {X,} on NP
introduced in section 1, a volume form on NP could be defined by

Lx,w=0 (36)

Forms and densities in ordinary and Grassmann Variables
In the previous equations, the volume form w is a top form (a D-dimensional
form on N). Top forms do not exist on infinite dimensional spaces nor on
Grassmann manifolds (graded manifolds, supermanifolds, etc.).
Are forms the only useful concept for defining volume forms? No, in the
thirties, densities were extensively used. Densities fell in disfavor, possibly
because in contrast to forms they do make an algebra. On the other hand,
complexes (ascending and descending) can be constructed with densities as
well as with forms.
By forms (exterior differential forms) one means totally antisymmetric co-
variant tensors. By densities (linear tensor densities) one means totally
antisymmetric contravariant tensor-densities of weight one.
We recall properties of forms and densities on ordinary D-dimensional mani-
folds M” which can be established in the absence of a metric tensor because
they are readily useful in Grassmann calculus.

Ascending complex of forms on MP
Let AP be the space of p-forms on MP and d the exterior differentiation
d: AP — AP (37)
Since dd = 0, the graded algebra A® is an ascending complex w.r.t. the
operator d
. I (38)

Descending complex of densities on MP
Let D, be the space of p-densities on MP and vy the divergence operator,
also labeled b

VD, — Dy, V- =0 (39)

Since bb = 0, D, (which is not a graded algebra) is a descending complex
w.r.t. the divergence operator

Dy =Dy = - =D, (40)



Metric-dependant and dimension-dependant transformations.

C, : AP — D, is a metric-dependant map. One can map D, into A"~ on
an orientable manifold by a dimension-dependant transformation (using the
alternating symbol on R"). The star operator (Hodge-de Rham) combines
a metric-dependent and a dimension-dependant operator. By isolating its
metric-dependant component 'y, one can construct an ascendiong complex
on D, corresponding to the descending complex on A®* w.r.t. to the metric
transpose

51 APTL s AP (41)
Indeed 3 := C\ydC; ! is such that

ﬂ : Dp g Dp+1 (42)

We are shelving temporarily this paragraph since there are no metric tensor
on Grassmann manifolds.

Grassmann case

As a rule of thumb, it is most often sufficient to insert the word “graded”
in the corresponding ordinary situation. For example an ordinary form is
an antisymmetric covariant tensor, a Grassmann form is a graded antisym-
metric covariant tensor: w...a8...= —(=1)%w...Ba... where & € {0, 1}
is the grading of o. Therefore a Grassmann form is symmetric in the inter-
change of two Grassmann indices.

Two properties of forms on real variables remain true for forms on Grass-
mann variables, namely

ddw =0 (43)
d(wAB) = dw A B+ (—1)%w A df (44)

where @ and d = 1 are the parities of w and d, respectively: the parity of
a real p-form is even for p = 0 mod 2, odd for p = | mod2; the parity of a
Grassmann p-form is always even.

A form on Grassmann variables is a symmetric tensor; therefore the ascend-
ing complex A'(Ro'”) of Grassmann forms w.r.t. d does not terminate at
v-forms.

Two properties of densities on real variables remain true for densities F on
Grassmann variables, namely

(V)(V)F =0 (45)



(VHXF)=(V-X)-F+ (=) VXV.F, X avector field  (46)

A density is a tensor of weight 1; multiplication by a tensor of weight zero
is the only possible product which maps a density into a density.

A density on Grassmann variables is a symmetric contravariant tensor;
therefore the descending complex D.(Rol”) of Grassmann densities with re-
spect to V- does not terminate at v-densities.

Representations of fermionic and bosonic creation and annihilation operators
are easily constructed on the ascending complex of forms and the descending
complex of densities.

e on MP for the fermionic case

e on R for the bosonic case.

They provide representations of supersymmetric Fock spaces.

Section 5 on volume forms is clearly a report of current work still on the
drawing board. The pleasure of a workshop is to discuss unfinished work
with colleagues.
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Problems in functional integration
A sampler

1 Functional integration and PDE
e Poisson processes and wave equations.
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